Simulation of Climate Change Impacts on Heat Stress over the Caspian Sea Region

Document Type : Original Article

Author

Dep. of Water Resources Research (WRR), Ministry of Energy, Water Research Institute (WRI), Tehran, Iran

Abstract

Iran is a large country with a wide climate diversity and up to 80 percent of territory of Iran is located in the arid and semi-arid region with. Numerous observations and various modeling confirm that the Earth's climate is getting warmer. Such condition leads to increase of heat waves and heat stress. Over the last fifty years the average temperature of Iran up to 1.4 degree per decades has increased. The aim of this study is to investigate the heat stress by indicators (pHSI) and physiological pressure (pPhS) in the Caspian Sea region during past (1997-2017) and future (2020-2040) to evaluate the effect of global warming on thermal stresses in this the region of interest.
Current study is based on the Regional Climate Modeling System (RegCM – V.4.6). The RegCM is used for downscaling of GFDL-ESM2M general circulation model (GCM). The evaluation is based on three RCP's emission scenarios includes RCP2.6, RCP4.5 and RCP8.5. The observational period is 1997-2017 and future period is 2020-2040. The indexes for evaluation of heat stress is physiological strain (pPhS) and heat stress index (pHSI). The results of this study show that in the winter during the observational period (1997-2017) in the study area, the thermal stress index (pHSI) indicates a slight cold stress, which the maximum is related to Rasht station and the minimum is related to Babolsar station. Such conditions, however, with lower pHSI values ​​for the next period are also observed in all three scenarios of RCP2.6, RCP4.5 and RCP8.5. The Physiological Pressure Index (pPhS) shows that there is a mild cold pressure in all stations studied during the winter in the basic period, and in the future decades this index will increase in all scenarios. In the spring, the physiological pressure index will be neutralized (partial pressure). In the summer, mild heat pressure was observed throughout all station during observational period and the intensity of this heat pressure will increase between 2020 and 2040. In autumn, the results show a mild cold pressure for the observation (base) period, which will be an increase in the physiological pressure index (pPhS) index in Anzali, Ramsar and Rasht stations in the future, and a decrease in the future index value in Gorgan station.
 

Keywords


1. دفتر ملی هیات بین الدولی تغییر اقلیم، ۱۳۹۶. گزارش فنی آشکارسازی و ارزیابی اثرات تغییر اقلیم و چشم انداز آن در ایران طی قرن بیست و یکم، سازمان هواشناسی، پژوهشکده اثلیم شناسی.
2. عسگری، سجاد. قهرمان، نوذر. بابائیان، ایمان. ۱۳۹۶. پیش‌نگری کمی اثرات محتمل تغییر اقلیم بر شاخص گرمایی (THI) تحت سناریوهای واداشت تابشی (RCP) در ایران. پژوهشهای اقلیم‏شناسی، شماره ۳۱، ۱۸-۱.
3. فلاح قالهری، غلام‏عباس. اسماعیلی، رضا. شاکری، فهیمه. ۱۳۹۵. ارزیابی اثرات تغییرات اقلیمی بر تغییرات آسایش حرارتی بیرونی با استفاده از شاخــص دمای معادل فیزیولوژیکی (PET (در شهر مشهد)، سلامت و محیط زیست، شماره ۲، ۲۴۶-۲۳۳
4. لشکری، اعظم. بنایان، محمد. کوچکی، علیرضا. علیزاده، امین. سای چوی یانگ. پارک سئون کی. ۱۳۹۴. بررسی امکان سنجی استفاده از پایگاه داده AgMERRA برای ساخت داده‌های ناقص و گمشده موجود در داده‌های ایستگاه‌های سینوپتیک (دشت مشهد). نشریه آب و خاک، شماره ۶، ۱۷۵۸-۱۷۴۹.
5ت مفیدی، عباس. کمالی، سمیه. زرین، آذر. ۱۳۹۲. ارزیابی توان مدل RegCM4 پیوند خورده با طرح‌ واره غبار در آشکارسازی ساختار طوفان‌های گردوغباری تابستانه در دشت سیستان. جغرافیا، شماره ۳، ۶۹-۵۱.
 
6. Anthes R.A. 1977. A cumulus parameterization scheme utilizing a one-dimensional cloud model, Mon. Wea. Rev., 105: 270-286.
7. De Freitas C. 1985. Assessment of human bioclimate based on thermal response. International Journal of Biometeorology, 29(2): 97-119.
8. Dehghan, H., Mortzavi, S.B., Jafari M.J., Maracy M.R. 2015. Development and Validation of a Questionnaire for Preliminary Assessment of Heat Stress at Workplace. J Res Health Sci. 15(3):175-81.
9. Dickinson, R.E., Errico, R.M., Giorgi, F., Bates, G.T. 1989. A regional climate model for the western United States, Climatic Change, 15: 383-422.
10. Dickinson, R.E., Kennedy P.J., Henderson-Sellers A., and Wilson, M. 1986. Biosphere-atmosphere transfer scheme (bats) for the ncar community climate model, Tech. Rep. NCARE/TN-275+STR, National Center for Atmospheric Research.
11. Giorgi, F. and Bates G.T. 1989. The climatological skill of a regional model over complex terrain, Mon. Wea. Rev. 117: 2325–2347.
12. Giorgi, F., Marinucci M.R., and Bates G.T. 1993. Development of a second generation regional climate model (regcm2) i: Boundary layer and radiative transfer processes, Mon. Wea. Rev. 121: 2794-2813.
13. Grell, G.A., Dudhia J., and Stauffer D.R. 1994. Description of the fifth generation Penn State/NCAR Mesoscale Model
(MM5), Tech. Rep. TN-398+STR, NCAR, Boulder, Colorado, pp. 121.
14. Hajizadeh R., Golbabaei F., Monazzam M.R., Dehghan S.F. and Navan E.E. 2014. Productivity loss from occupational exposure to heat stress: A case study in Brick Workshops/Qom-Iran. Int J Occup Hyg. 6(3):143-8.
15. Heidari H., Golbabaei F., Shamsipour A., Forushani A.R. and Gaeini, A. 2015. Outdoor occupational environments and heat stress in IRAN. J Environ Health Sci Engineer. 13(1): 1.
16. Holtslag, A.A.M., De Bruijn E.I.F. and Pan, H.L. 1990. A high resolution air mass transformation model for shortrange weather forecasting, Mon. Wea. Rev., 118, 1561-1575.
17. IPCC. 2007. Climate change synthesis report - summary for policymakers: Retrieved from Cambridge University Press.
18. Kjellstrom T. 2009. Climate change, direct heat exposure, health and well-being in low and middle income countries. Global Health Action. 2:10.3402/gha.v2i0.1958
19. Mccollor, D. and Stull, R. 2008. "Hydro meteorological accuracy enhancement via post processing of numerical weather forecasts in complex terrain", Wea. Forecasting. 23, pp. 131-144
20. Van Vuuren, D.P., Edmonds, J., Kainuma, M., Riahi, K., Thomson, A., Hibbard, K. and Masui, T. 2011. The representative concentration pathways: an overview. Climatic change, 109 (1-2), 5.