تغییرات لبه بیرونی چرخش فصلی سلول هادلی نیمکره جنوبی در کمربند گرمسیری

نوع مقاله : مقاله پژوهشی

نویسندگان

1 دانشجو دکترا آب و هواشناسی دانشگاه زنجان و مدرس مدعو دانشگاه کوثر بجنورد، ایران

2 استادیار و عضو هئیت علمی آب و هواشناسی دانشگاه زنجان، زنجان، ایران

3 استادیار جغرافیای طبیعی و عضو هیئت علمی گروه جغرافیا و برنامه ریزی شهری دانشگاه کوثر بجنورد

چکیده

چرخش سلول‌هادلی برای سیستم آب و هوایی از اهمیّت اساسی برخوردار است و تغییرات آن مخاطرات و دگرگونی‌های آب و هوایی مهمی بر آب و هوای کمربند گرمسیری و نیمه­گرمسیری دارد. میزان گسترش مناطق گرمسیری و متعاقب آن خشک شدن مناطق نیمه­گرمسیری زیر شاخه­های فرونشینی سلول­‌هادلی رو به افزایش است؛ بنابراین در این مطالعه به بررسی تغییرات فصلی لبه بیرونی سلول‌هادلی در نیمکره جنوبی از داده­های بازتحلیل پیش­بینی میان مدت هواسپهر اروپایی (ECMWF) نسخه (ERA5) با تفکیک مکانی 25/0*25/0 درجه و بازه زمانی 40 سال (2018-1979) از تابع جریان عملکرد نصف­النهاری در سطح 500 هکتوپاسکال با استفاده از نرم افزارهای گردس و متلب پرداخته شده است. یافته­های پژوهش نشان داد، تغییرات لبه بیرونی سلول‌هادلی در فصل زمستان از عرض­های 35 تا 38 درجه جنوبی، در فصل بهار از عرض­های 29 تا 32 درجه جنوبی، در فصل پاییز از عرض­های 30 تا 5/35 درجه جنوبی و در فصل تابستان از عرض­های 28 تا 29 درجه جنوبی قابل مشاهده است؛ و همچنین با افزایش هر سال، لبه بیرونی سلول‌هادلی در فصلهای زمستان، پاییز، بهار و تابستان به طور متوسط به اندازه 039/0-، 048/0-، 014/0- و 012/0- درجه جغرافیایی افزایش می­یابد. به طور کلی، نتایج نشان می دهد که گسترش لبه بیرونی سلول‌هادلی نیمکره جنوبی در فصلهای زمستان و پاییز به اندازه 2 تا 5/3 درجه عرض جغرافیایی افزایش یافته است و نسبت به فصول تابستان و بهار بسیار برجسته و آشکار است و شواهدی از تغییرات و گسترش چرخش سلول‌هادلی را به سمت عرض­های جغرافیایی بالاتر را نشان می‌دهد و افزایش خشکی و بیابان­زایی را در پیش رو خود دارد.

کلیدواژه‌ها


عنوان مقاله [English]

External edge changes of the seasonal carcolation of the southern hemisphere Hadley cell in the tropical belt

نویسندگان [English]

  • sayyed mahmoud hosseini seddigh 1
  • masoud jalali 2
  • Teimour Jafarie 3
1 Climatologhy, zanjan university, zanjan, iran
2 department geograghy, zanjan university zanjan, iran
3 Assistant Professor of Geogeraphy and Urban Planning Group of Kosar University Bojnourd, Iran
چکیده [English]

In this study, the data of (ECMWF) version (ERA5) with spatial resolution of 0.25 * 0.25 degrees and a period of 40 years (1979-1989) of the meridional performance flow function Seasonal changes in the external edge of the Hadley cell in the Northern Hemisphere have been investigated using MATLAB. Findings showed that the outer edge of Hadley cell in winter from 35 to 38 degrees south, in spring from 29 to 32 degrees south, in autumn from 30 to 35.5 degrees South and can be seen in summer from 28 to 29 degrees south; Also, with increasing each year, the outer edge of the Hadley cell in winter, autumn, spring and summer increases by -0.039, -0.048, -0.014 and -0.012 degrees on average. In general, the results show that the expansion of the outer edge of the Hadley cell has increased by 2 to 3.5 degrees latitude in winter and autumn, and shows that it is very prominent compared to the summer and spring seasons. Shows the expansion of the Hadley cell rotation towards higher latitudes.

کلیدواژه‌ها [English]

  • "Climate change"
  • "Hadley cell"
  • "Drought"
  • "Southern Hemisphere"
  1. Allen, R.J., and Kovilakam, M. 2017. The role of natural climate variability in recent tropical expansion. J. Climate, 30, 6329– 6350, https://doi.org/ 10.1175/JCLI-D-16-0735.1.
  2. Allen, R.J., Sherwood, S.C., Norris, J.R., and Zender, C.S. 2012. Recent Northern Hemisphere tropical expansion primarily driven by black carbon and tropospheric ozone. Nature, 485: 350-354, DOI:10.1038/nature11097.
  3. Cai, Cowan, Thatcher 2012. Rainfall reductions over Southern Hemisphere semi-arid regions: The role of subtropical dry zone expansion, scientific Reports., DOI: 10.1038/srep00702. Pp: 1-5.
  4. Choi, J., S.-W. Son, Lu, J., and Min, S.-K. 2014: Further observational evidence of Hadley cell widening in the Southern Hemisphere. Geophys. Res. Lett., 41: 2590-2597, https:// doi.org/10.1002/2014GL059426.
  5. Cook, K.H. 2004. Hadley Circulation Dynamics: Seasonality and the Role of Continents.  In “The Hadley Circulation: Past, Present, and Future”. Series: Advances in Global Change Research, Vol.21. Diaz, Henry F.; Bradley, Raymond S. (Eds.), 511 p., SBN: 1-4020-2943-8.
  6. CSIRO (Commonwealth Scientific and Industrial Research Organisation) 2012. Climate and water availability in South-Eastern Australia: a synthesis of findings from phase 2 of the South Eastern Australian climate initiative (SEACI). 41.
  7. Dai, A. 2013. Increasing drought under global warming in observations and models. Nat. Climate Change, 3: 52-58, DOI:10.1038/ nclimate1633.
  8. Davis, N. A.(2017) The Dynamics of Hadley Circulation Variability and Change, Colorado State University, Libraries.
  9. Davis, S.M., and Rosenlof, K.H. 2012. A multidiagnostic intercomparison of tropical-width time series using reanalyses and satellite observations, J. Clim., 25: 1061-1078, DOI:10.1175/ JCLI-D-11-00127.1.
  10. Devasthale, A., Sedlar, J., Koenigk, T., and Fetzer, E.J. 2013. The thermodynamic state of the Arctic atmosphere observed by AIRS: comparisons during the record minimum sea ice extents of 2007 and 2012. Atmos. Chem. Phys. 13(15): 7441-7450.
  11. Dong, X., Zib, B., Xi, B., Stanfield, R., Deng, Y., Zhang, X., Lin, B., and Long, C. 2014. Critical mechanisms for the formation of extreme Arctic sea-ice extent in the summers of 2007 and 1996. Clim. Dyn. 43(1–2): 53-70.
  12. Dorigo, W., de Jeu, R., Chung, D., Parinussa, R., Liu, Y., Wagner, W., and Ferna`ndez-Prieto D. 2012. Evaluating global trends (1988-2010) in harmonized.
  13. Feng, S., and Fu, Q. 2013. Expansion of global drylands under a warmer climate. Atmos. Chem. Phys., 13, 10081–10094, DOI:10.5194/acp-13-10081-2013.
  14. Frierson, D.M.W., Lu, J., and Chen, G. 2007. Width of the Hadley cell in simple and comprehensive general circulation models. Geophys. Res. Lett., 34, L18804, doi:10.1029/2007GL031115.
  15. Fu, Q., and Lin, P. 2011. Poleward Shift of Subtropical Jets Inferred from Satellite-Observed Lower Stratospheric Temperatures. J. Climate, 24: 5597-5603, DOI:10.1175/JCLI-D-11-00027.1.
  16. Gaffen, D.J., Santer, B.D., Boyle, J.S., Christy, J.R., Graham, N.E., and Ross, R.J. 2000. Multidecadal changes in the vertical temperature structure of the tropical troposphere. Science, 287: 1242-1245.
  17. Gillet, N.P., Zwiers, F.W., Weaver, A.J., and Stott, P.A. 2003. Detection of Human Influence on Sea-Level Pressure, Nature, 40(422): 292-294.
  18. Graversen, R.G., Mauritsen, T., Drijfhout, S., Tjernström, M., and Mårtensson. S. 2011. Warm winds from the Pacific caused extensive Arctic sea-ice melt in summer 2007. Clim. Dyn. 36(11–12): 2103-2112. DOI:10.1007/ s00382-010-0809-z.
  19. Held, I.M., and Soden, B.J. 2006. Robust Responses of the Hydrological Cycle to Global Warming. J. Climate, 19: 5685-5699, DOI:10.1175/JCLI3990.1
  20. Hu, Y., and Fu, Q. 2007. Observed poleward expansion of the Hadley circulation since 1979, Atmos. Chem. Phys.7: 5229-5236.
  21. Hurrell, J. 1996. Influence of variations in extra tropical wintertime teleconnections on Northern Hemisphere temperature. Geophy. Res. Lett., 23: 665-668.
  22. IOCI, 2012. Western Australia’s weather and climate: A synthesis of Indian Ocean Climate Initiative (IOCI) stage 3 research. CSIRO and BoM, 119 pp.
  23. IPCC, 2001. Climate Change 2001. The Science Basis. J.T. Houghton et al. (eds.), Cambridge University Press, 881 pp.
  24. IPCC, 1996. Climate Change 1995: The Science of Climate Change. J.T. Houghton et al. (eds.), Cambridge University Press, 572 pp.
  25. Johanson, C.M., and Fu, Q. 2009. Hadley cell widening: Model simulations versus observations. J. Climate, 22, 2713–2725, DOI:10.1175/2008JCLI2620.1.
  26. Jones, P.D., New, M., Parker, D.E., Martin, S., and Rigor, I.G. 1999. Surface air temerature and its changes over the past 150 years. Rev. Geophys., 37: 173-199.
  27. Karnauskas, K.B., and Ummenhofer, C.C. 2014. On the dynamics of the Hadley circulation and subtropical drying. Clim. Dyn, 2259-2269, DOI:10.1007/s00382-014-2129-1.
  28. Kumar, A., Perlwitz, J., and Eischeid J. 2010. Contribution of sea ice loss to Arctic amplification. Geophys. Res. Lett. 37(21): L21701. DOI:10.1029/2010GL045022.
  29. Liu. J., Song, M., Hu, Y., and Ren, X. 2012. Changes in the strength and width of the Hadley Circulation since 1871. Clim. Past. 8: 1169-1175, DOI:10.5194 /cp-8-1169-2012.
  30. Lu, J., Vecchi, G.A., and Reichler, T. 2007. Expansion of the Hadley cell under global warming, Geophys. Res. Lett. 34: L06805, DOI:10.1029/2006GL028443.
  31. Lu, C. Deser, and Reichler, T. 2009: Cause of the widening of the tropical belt since 1958. Geophys. Res. Lett., 36: L03803, https://doi.org/10.1029/2008GL036076.
  32. Lucas, C., Timbal, B., and Nguyen, H. 2014. The expanding tropics: a critical assessment of the observational and modeling studies. WIREs Clim. Change, 5: 89-112.
  33. Lucas, C., Nguyen, H., and Timbal, B. 2012. An observational analysis of Southern Hemisphere tropical expansion. J. Geophys. Res. 117, D17112, DOI:10.1029/2011JD017033.
  34. McLandress, C., Shepherd, T.G., Scinocca, J.F., Plummer, D.A., Sigmond, M., Jonsson, A.I., and Reader, M.C. 2011. Separating the dynamical effects of climate change and ozone depletion. Part II: Southern Hemisphere troposphere. J. Climate, 24: 1850-1868, DOI:10.1175/ 2010JCLI3958.1.
  35. Min, S.-K., and Son, S.-W. 2013: Multimodel attribution of the Southern Hemisphere Hadley cell widening: Major role of ozone depletion. J. Geophys. Res. Atmos. 118: 3007-3015, DOI:10.1002/ jgrd.50232.
  36. Mitas, C.M., and Clement, A. 2005. Has the Hadley cell been strengthening in recent decades? Geophys. Res. Lett. 32(3): L03809. DOI:10.1029/2004 GL021765.
  37. Morales, M.S., Christie, D.A., and Villalba, R. 2012. Precipitation changes in the South American Altiplano since 1300AD reconstructed by tree-rings. Clim. Past, 8: 653-666. DOI:10.5194/ cp-8-653-2012.
  38. New, M., Todd, M., Hulme, M., and Jones, P. 2001. Precipitation measurements and trends in the twentieth century. Int. J. Climatol. 21: 1899-1922, DOI:10.1002/joc.680.
  39. Nguyen, H., Lucas, C., Evans, A., Timbal, B., and Hanson, L. 2015. Expansion of the Southern Hemisphere Hadley Cell in REsponse to Greenhouse Gas Forcing. J. Climate, 28: 8067–8077, DOI:0.1175/JCLI-D-15-0139.1.
  40. Ort, A.H., and Yienger, J.J. 1996. Observed interannual variability in the Hadley circulation and its connection to ENSO. J. Climate, 9: 2751-2767.
  41. Parker, D.E. 2000. Temperatures High and Low, Science, 287: 1216.
  42. Perlwitz, J., Pawson, S., Fogt, R.L., Nielsen, J.E., and Neff, W.D. 2008: Impact of stratospheric ozone hole recovery on Antarctic climate. Geophys. Res. Lett., 35: L08714, DOI:10.1029/ 2008GL033317.
  43. Polvani, L.M., Waugh, D.W., and Correa, G.J.P. 2011. Stratospheric ozone depletion: The main driver of twentieth-century atmospheric circulation changes in the Southern Hemisphere. J. Clim. 24: 795-812.
  44. Polvani, L.M., Waugh, D.W., Correa, G.J.P., and Son, S.-W. 2011. Stratospheric ozone depletion: The main driver of twentieth century atmospheric circulation changes in the Southern Hemisphere. J. Climate, 24: 795-812, DOI:10.1175/ 2010JCLI3772.1.
  45. Post, D.A., Timbal, B., Chiew, F.H.S., Hendon, H.H., Nguyen, H., and Moran, R. 2014. Decrease in southeastern Australian water availability linked to ongoing Hadley cell expansion, Earth’s Future, 2: 231-238, DOI:10.1002 /2013EF000194.
  46. Scheff, J., and Frierson, D.M.W. 2012. Robust future precipitation declines in CMIP5 largely reflect the poleward expansion of model subtropical dry zones. Geophys. Res. Lett., 39: L18704, DOI:10.1029/2012GL052910.
  47. Scheff, J., and Frierson, D.M.W. 2012. Robust future precipitation declines in CMIP5 largely reflect the poleward expansion of model subtropical dry zones. Geophys. Res. Lett., 39: L18704, DOI:10.1029/2012GL052910.
  48. Seidel, D.J., Fu, Q., Randel, W.J., and Reichler, T.J. 2008. Widening of the tropical belt in a changing climate. Nat. Geoscience, 1: 21-24, DOI:10.1038/ngeo.2007.38.
  49. Solomon, A., Polvani, Waugh, L.M., D.W., and Davis, S.M. 2016. Contrasting upper and lower atmospheric metrics of tropical expansion in the Southern Hemisphere, Geophys. Res. Lett., 43: 10496-10503.
  50. Stachnik, J.P., and Schumacher, C. 2011. A comparison of the Hadley circulation in modern reanalyses. J. Geophys Res. 116: D22. DOI:10.1029/2011jd016677.
  51. Staten, P.W., Rutz, J.J., Reichler, T., and Lu, J. 2012. Breaking down the tropospheric circulation response by forcing. Climate Dyn., 39: 2361-2375, DOI:10.1007/s00382-011-1267-y.
  52. Waliser, D.E., Shi, Z., Lanzante, J.R., and Oort, A.H. 1999. The Hadley circulation: assessing NCEP/NCAR reanalysis and sparse in-situ estimates, Clim. Dyn., 15:719-735.
  53. Waugh, D.W., Coauthors, 2018. Revisiting the relationship among metrics of tropical expansion. J. Climate, https://doi.org/ 10.1175/JCLI-D-18-0108, in press.
  54. Wielicki, B.A., Wong, T., Allan, R.P., Slingo, A., Kiehl, J.T., Soden, B.J., Gordon, C.T., Miller, A.J., Yang, S.K., Randall, D.A., Robertson, F., Susskind, J., and Jacobowitz, H. 2002. Evidence for large decadal variability in the tropical mean radiative energy budget. Science 295:841-843. DOI: 10.1126/ science. 1065837.
  55. William, K.M., Laua, and Kyu-Myong Kim 2015. Robust Hadley Circulation changes and increasing global dryness due to CO2 warming from CMIP5 model projection. Earth, atmospheric, and Planetary Sciences. 112 (12): 3630-3635.
  56. WMO, (World Meteorological Organization) 1957. Meteorology-a three-dimensional science. Second session of the Commission for Aerology. WMO Bulletin IV, 4. WMO, Geneva, pp: 134-138.
  57. Zhang, X., Zwiers, F.W., Hegerl, G.C., Lambert, F.H., Gillett, N.P., Solomon, S., Stott, P.A., and Nozawa, T. 2007. Detection of human influence on twentieth-century precipitation trends. Nature, 448: 461-465, DOI:10.1038 /nature06025.