پیش‌بینی چندسالانه بارش ایران با مقیاس‌کاهی برونداد مدل‌های DCPP، مطالعه موردی: دوره 2023-2019

نوع مقاله : مقاله پژوهشی

نویسندگان

1 استادیار، پژوهشکده اقلیم‌شناسی، پژوهشگاه هواشناسی و علوم جو، مشهد

2 کارشناس ارشد پژوهشی، پژوهشکده اقلیم‌شناسی، پژوهشگاه هواشناسی و علوم جو، مشهد

10.30488/ccr.2021.291260.1046

چکیده

پروژه پیش‌بینی دهه‌ای، از برنامه‌های بلندپروازانه سازمان جهانی هواشناسی برای حذف خلاء بین پیش‌بینی‌های اقلیمی با برد زمانی کمتر از یک سال و پیش‌نگری اقلیمی با برد زمانی بیش از یک دهه است. این مقاله مراحل انجام کار و یافته‌های پیش‌بینی چندسالانه بارش با استفاده از مقیاس‌کاهی آماری برونداد مدل‌های DCPP از مجموعه مدل‌های پروژه CMIP6 که با داده‌های واقعی اول نوامبر سال 2019 آغازگری شده‌اند را بر روی ایران ارائه می‌دهد. دوره هدف پیش‌بینی 2023-2019 است. در این مطالعه از دو نوع داده برونداد مدل‌های پروژه DCPP در دو دوره تاریخی (2018-1989) و پیش‌بینی (2023-2019) و بارش شبکه ای GPCC در دوره 2018-1989 به عنوان داده‌های بازکاوی استفاده شده است. همچنین نقش دو دورپیوند دهه‌ای AMO و PDO بر بارش دوره هدف بررسی شد. یافته‌ها نشان دادند که در مجموع میانگین بارش در دوره 2023-2019 در محدوده نرمال تا کمتر از نرمال خواهد بود، به اینصورت که بر اساس دو روش تصحیح اریبی و وزنی بارش در نیمه غربی و جنوب کشور بیشتر از نرمال و در شرق کشور نرمال تا کمتر از نرمال، در روش‌پیش‌بینی احتمالاتی بارش سال‌های 2019 و 2020 در طبقه بیشتر از نرمال و سال‌های 2021، 2022 و 2023 عمدتا در طبقه کمتر از نرمال تا نرمال و به روش دورپیوندی در محدوده کمتر از نرمال پیش‌بینی می‌شود. هر چند پروژه DCPP در مراحل اولیه توسعه قرار داشته و نتایج منطقه‌ای آن به مقدار زیادی بستگی به روش‌های مقیاس‌کاهی بکار رفته دارد،  اما افق‌های جدیدی برای محققان و کاربران خدمات اقلیمی در حوزه منابع آب، کشاورزی، بیمه محصولات کشاورزی به وجود آورده است که می‌تواند نقشه راه کشور را در برنامه‌های توسعه پنج‌ساله هفتم (1405-1401) در حوزه منابع آب و کشاورزی شفاف سازد.

کلیدواژه‌ها


عنوان مقاله [English]

Annual to Decadal Prediction of Precipitation over Iran during 2019-2023 using statistical downscaling of DCPP models

نویسندگان [English]

  • Iman Babaeian 1
  • Raheleh modiriyan 2
  • Maryam Karimian 2
  • Zorhreh javanshiri 1
1 Climate Modeling and Early warning division, Climatology Research Institute, ASMERC, Mashahd, Iran
2 Climate modeling and early warning division, Climate Research Institute, ASMERC, Mashad, Iran
چکیده [English]

Decadal Climate Prediction Project (DCPP), is one of the ambitious programs to bridge the gap between climate prediction and climate. In order to provide climate services to stakeholders, the IRIMO provides daily and seasonal forecasts and climate projections. In the meantime, providing annual prediction has been one of the main requests of users from IRIMO, the gap of annual prediction was evident in previous years. In this study, Iran’s precipiation prediction for the period 2019-2023 were predictedusing the post-processing of the Decadal Climate Prediction Project (DCPP). For this purpose, two types of data have been used, including: output of DCPP project models in historical (1989-2018) and prediction (2019-2023) periods and observed precipitation data from GPCC, a grided databases as an alternative to observational (quasi-observational) data. The results showed that, Iran’s average precipitation in the period 2019-2023 will be normal to less than normal based on 4 methods of bias correction, multi-model weighting, probability prediction and climatic teleconections. As an average, findings of this project showed that the mean precipitation of Iran in the period 2019-2023 will be in the range of normal to less than normal, based on the DCPP model outputs and two decadal scale teleconnections of AMO and PDO. Based on bias correction and weighting system, precipitation in the western and southern half of the Iran will be more than normal and in the east it is normal to less than normal, in the probabilistic method precipitation in 2019 and 2020 preicted to be more than normal and in 2021- 2023, it will be less than normal to normal. Also, the average precipitation in the period of 2019-2023 will be in the range of less than normal, based on the teleconnection method.

کلیدواژه‌ها [English]

  • Decadal Prediction
  • DCPP
  • teleconections
  • Precipitation
  • Iran
  1. Birkel, S. D., Mayewski, P.A., Maasch, K.A.,  Kurbatov,A.V. and Lyon, B.  2018. Evidence for a volcanic underpinning of the Atlantic multidecadal oscillation. npj Climate Atmos. Sci., 1, 24, https://doi.org /10.1038/S41612-018-0036-6.
  2. Boer, G.J., Smith, D.M., Cassou, C., Doblas-Reyes, F., Danabasoglu, G., Kirtman, B., Kushnir, Y., Kimoto, M., Meehl, G. A., Msadek, R., Mueller, W. A., Taylor, K. E., Zwiers, F., Rixen, M., Ruprich-Robert, Y., and Eade, R. 2016. The Decadal Climate Prediction Project (DCPP) contribution to CMIP6, Model Dev., 9, 3751-3777, doi:10.5194/gmd-9-3751-2016
  3. Chen, D., Zebiak, S.E., Cane, M.A., Busalacchi, A.J. 1997. Initialization and predictability of a coupled ENSO forecast model. Mon Weather Rev 125:773–788. doi:1175/1520-0493(1997)125<0773:IAPOAC>2.0.CO;2
  4. Darand, M., Zand-karimi S., 2016, Evaluation of the accuracy of the Global Precipitation Climatology Center (GPCC) data over Iran, 10(3), 95-113.
  5. Doblas-Reyes, F.J., Andreu-Burillo, I.,  Chikamoto, Y., García-Serrano, J., Guemas, V., Kimoto, M.,  Mochizuki, T.,  Rodrigues, L.R.L., and van Oldenborgh, G.J. 2013.  Initialized near-term regional climate change prediction, Nature Communication, 16(4), 1715.
  6. Hawkins, E., Sutton, R. 2009a. The potential to narrow uncertainty in regional climate predictions. Amer. Meteor. Soc., 90: 1095–1107.
  7. Kim, H.M., Webster, P.J., Curry, J.A. 2012. Evaluation of short-term climate change prediction in multi-model CMIP5 decadal hindcasts. Geophys. Lett., 39, L10701, doi:10.1029/2012GL051644.
  8. Kirtman, B., Power, S. B., Adedoyin, J.A., Boer, G.J., Bojariu, R., Camilloni, I., Doblas-Reyes, F.J., Fiore, A.M., Kimoto, M., Meehl, G.A., Prather, M., Sarr, A.,  Schär, C., Sutton, R., van Oldenborgh, G.J., Vecchi G., Wang, H.J. 2013. Near-term Climate Change: Projections and Predictability. In: Climate Change 2013: The Physical Science Basis. Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate. Cambridge University Press, Cambridge, United Kingdom and New York, NY, USA.
  9. Leung L.Y., and North G.R. 1990. Informatiomn theory and climate prediction, Journal of Climate, Vol.3, 1-14.
  10. Luo, F., Li, S., and Furevik, T. 2018. Weaker connection between the Atlantic multidecadal Oscillation and Indian summer rainfall since the mid-1990s. Atmos Oceanic Sci Lett. https://doi.org/10.1080/16742834.2018.1394779
  11. Masoodian, S.A., Keikhosravi Kiany, M.S., Raiyatpishe, F. 2014. Introducing and comparison of Esfezari database with GPCC, DPCP and CMAP, Geographical research Journal, 1(112): 73-88.
  12. Meehl, G.A., Teng, H., Arblaster, J.M. 2014. Climate model simulations of the observed early-2000s hiatus of global warming. Nat Clim Change 4:898–902. DOI:1038/nclimate2357
  13. Miri, M., Azizi, G., Khoshakhlagh,, F., and Rahimi, R. 2017. 4Evaluation Statistically of Temperature and Precipitation Datasets with Observed Data in Iran, Iran-Watershed Management Science & Engineering, 10(35): 39-50.
  14. Moriasi, D.N., Arnold, J.G.M., Van Liew, W., Bingner, R.L., Harmel, R.D., Veith. T.L. 2007. Model evaluation guideline for systematic quantification of accuracy in watershed simulation. American Society of Agricultural and Biological Engineers ISSN 0001−2351 Transactions of the ASABE 50(3), 885-900.
  15. Pohlmann, H., Kröger, J., and Greatbatch, R.J. 2017. Initialization shock in decadal hindcasts due to errors in wind stress over the tropical Pacific. Clim Dyn 49, 2685–2693 (2017). https://doi.org/10.1007/s00382-016-3486-8
  16. Shukla J. 1981. Dynamical Predictability of Monthly Means, Journal of Atmospheric Sciences, https://doi.org/10.1175/1520-0469(1981)038<2547:DPOMM>2.0.CO;2
  17. Smith, D.M., Scaife, A.A., and Kirtman, B.P. 2012a. What is the current state of scientific knowledge with regard to seasonal and decadal forecasting? Environ. Res. Lett., 7, 015602, doi:10.1088/1748-9326/7/1/015602.
  18. Smith, D.M., Eade, R., Scaife, A.A. 2019. Robust skill of decadal climate predictions. npj Clim Atmos Sci 2, 13. https://doi.org/10.1038/s41612-019-0071-y
  19. Van Oldenborgh, G., Doblas Reyes, F., Wouters, B., and Hazeleger, W. 2012. Decadal prediction skill in a multi-model ensemble. Climate Dyn. 38, 1263–1280.
  20. Wang, X., Chen, M., Wang, C., Yeh, S., and Tan, W. 2019a. Evaluation of performance of CMIP5 models in simulating the North Pacific oscillation and El Niño Modoki. Clim Dyn 52, 1383–1394
  21. Wang, X., Guan, C., Huang, R., Tan, W., Wang, L. 2019b. The roles of tropical and subtropical wind stress anomalies in the El Niño Modoki onset. Clim Dyn 52(11): 6585–6597
  22. WMO-WCRP portal: https://www.wcrp-climate.org/dcp-overview; available in: 24/1/202