پتانسیل تاثیرگذاری فورانِ آتشفشان های بزرگ قرن بیستم بر روی تغییر دمای ایستگاه های منتخب ایران

نوع مقاله : مقاله پژوهشی

نویسندگان

1 دانشیار گروه جغرافیا- دانشگاه گلستان، گرگان، ایران

2 دانشکده علوم انسانی، گروه جغرافیا، دانشگاه گیلان، رشت، ایران

3 گروه جغرافیا، دانشگاه گلستان، گرگان، ایران

چکیده

فعالیت آتشفشانی می‌تواند از طریق ایجاد اختلال در ورود تابش خورشید نوسانات آب و هوایی ایجاد کند. در این پژوهش سعی شده تا اثر فعالیت‌های آتشفشانی عمده دنیا بر روی تغییرات دمایی در ایران واکاوی شود. برای رسیدن به این منظور ابتدا 16 ایستگاه هواشناسی دارای آمار بلند مدت در سطح ایران انتخاب و از سازمان هواشناسی کشور سری زمانی بلند مدت دما دریافت شد. در ادامه برای انتخاب آتشفشان‌های عمده از شاخص VEI و DVI استفاده و شش آتشفشان عمده انتخاب شدند. برای بررسی تاثیر فعالیت‌های آتشفشانی عمده بر روی دمای در ایران از تکنیک‌های SEA و رگرسیون خطی چندگانه بهره برده شد. نتایج نشان داد که بعد از فوران‌های آتشفشانی عمده می توان اثرات کاهشی دما را با تاخیر زمانی صفر، یک و دو ساله مشاهده کرد و بیشترین شدت کاهش دما در سال اول بعد از وقوع آتشفشان مشاهده شد. مقایسه سه متغیرِ دمای میانگین، دمای میانگین حداقل و دمای میانگین حداکثر نشان داد که فعالیت‌های آتشفشانی بیشترین تاثیر کاهشی را بر روی دمای میانگین حداکثر دارند. نتیجه بررسی برای تفکیک فصول نیز مشخص کرد که در زمستان شدت اثرگذاری کاهشی بیشتری رخ می دهد ولی در تابستان اثر کاهشی آتشفشان‌ها مدت زمان بیشتری دوام دارد. در نهایت یافته‌های این تحقیق نشان می دهد که به طور میانگین در سال وقوع فوران آتشفشان‌های عمده کاهش ۶۷.۰- درجه سانتی‌گرادی، در سال اول بعد از فوران آتشفشان‌ها میزان کاهش 1- درجه سلسیوس و در تاخیر زمانی دو ساله میانگین کاهش دما 0.47- درجه سلسیوس مشاهده شده است. از این رو می توان تایید کرد که فوران آتشفشان‌های عمده بر روی دمای ایران تاثیر گذار بوده و باعث کاهش دما در ایران شده اند.

کلیدواژه‌ها


عنوان مقاله [English]

The potential impact of the eruption of huge volcanoes of the twentieth century on the temperature change of selected stations in Iran

نویسندگان [English]

  • Gholamreza Roshan 1
  • Mahmud Davudi 2
  • Mohadeseh Salehizadeh 3
1 Department of Geography, Golestan University, Gorgan, Iran
2 Department of Geography, Guilan University, Rasht, Iran
3 Department of Geography, Golestan University, Gorgan, Iran
چکیده [English]

Volcanic activity can cause climate fluctuations by disrupting the entry of sunlight. In this study, the effect of major volcanic activities in the world on temperature changes in Iran has been investigated. To achieve this, first 16 meteorological stations with long-term statistics in Iran were selected and a long-term temperature series was received from the Meteorological Organization. Then, VEI and DVI indexes were used to select major volcanoes and six major volcanoes were selected. SEA and multiple linear regression techniques were used to investigate the effect of major volcanic activity on temperature in Iran. The results showed that after major volcanic eruptions, the effects of decreasing temperature can be observed with time delays of zero, one and two years, and the greatest intensity of temperature decrease was observed in the first year after the occurrence of the volcano. Comparison of the three variables of mean temperature, minimum mean temperature and maximum mean temperature showed that volcanic activity has the greatest decreasing effect on the mean maximum temperature. The results of the study to separate the seasons also showed that in winter the intensity of the decreasing effect occurs more, but in summer the decreasing effect of volcanoes lasts longer. Finally, the findings of this study show that on average, in the year of the occurrence of major volcanoes, a decrease of -67.0 degrees Celsius, in the first year after the eruption, the rate of decrease of -1 degrees Celsius and in a two-year delay, the average decrease. Temperature -0.47 degrees Celsius has been observed. Therefore, it can be confirmed that the eruption of major volcanoes has affected the temperature of Iran and has caused a decrease in temperature in Iran.

کلیدواژه‌ها [English]

  • Temperature change
  • DVI index
  • VEI index
  • linear regression
  • Iran
  1.  

    1. صمدیان فرد، سعید. اسدی، اسماعیل. 1396. پیش بینی نمایه خشکسالی SPI به روش‌های رگرسیون بردار پشتیبان و خطی چندگانه. نشریه حفاظت منابع آب و خاک، سال ششم، شماره چهارم، 16-1.
    2. مظفری، غلامعلی. میرموسوی، سید حسین. خسروی، یونس. 1391. ارزیابی روش‌های زمین آمار و رگرسیون خطی در تعیین توزیع مکانی بارش. جغرافیا و توسعه، شماره 27، 76-63.
    3. کلانتری، خلیل. 1389. پردازش و تحلیل داده‌ها در تحقیقات اجتماعی-اقتصادی با استفاده از نرم افزار. SPSS نشر شریف، 388.
    4. زراعتی نیشابوری، سپیده. پوررضا بیلندی، محسن. خاشعی سیوکی، عباس. شهیدی، علی. 1399. مقایسه مدل رگرسیون فازی امکانی و رگرسیون کمترین مربعات فازی در پیش‌بینی تراز سطح ایستابی آبخوان دشت نیشابور. علوم و مهندسی آبیاری، جلد 43، 131-143.
    5. جعفری، مجید. دین پژوه، یعقوب. 1396. ارزیابی کاربرد رگرسیون چند متغیره تیغه‌ای در برآورد تبخیر از تشت، علوم و مهندسی آبیاری. جلد 40، شماره 1، 83-97.
    6. عزیزی، قاسم. 1383. تغییر اقلیم. تهران. انتشارات قومس. چاپ اول.
    7. شیخ فخرالدینی، سارا. عباس نژاد، احمد. شیخ فخرالدینی، مهدی. ذهاب ناظوری، سمیه. شاهی، علی. 1391. بررسی تاثیر آتشفشان بر شرایط آب و هوایی یک منطقه : مطالعه موردی آتشفشان بیدخوان. ششمین همایش ملی زمین شناسی دانشگاه پیام نور.
    8. Alfaro-Sánchez, R., Camarero, J.J., Querejeta, J.I., Sagra, J., Moya, D., and Rodríguez-Trejo, D.A. (2020). Volcanic activity signals in tree-rings at the treeline of the Popocatépetl, Mexico. Dendrochronologia, 59, 125663.
    9. Alfaro-Sánchez, R., Nguyen, H., Klesse, S., Hudson, A., Belmecheri, S., Köse, N., and Trouet, V. (2018). Climatic and volcanic forcing of tropical belt northern boundary over the past 800 years. Nature Geoscience, 11(12), 933–938.
    10. Altman, J., Saurer, M., Dolezal, J., Maredova, N., Song, J.S., Ho, C.H., and Treydte, K. 92021). Large volcanic eruptions reduce landfalling tropical cyclone activity: Evidence from tree rings. Science of The Total Environment, 775, 145-899.
    11. Bradley, M.M., and Hughes, M.K. (1998). Global-scale temperature patterns and climate forcing over the past six centuries. Nature, 392, 779- 787.
    12. Bradley, R.S., and Jones, P.D. (1992). Records of explosive volcanic eruptions over the last 500 years.In: Climate Since, AD 1500. Routledge, London, pp. 606-622.
    13. Chaochao, G.A.O., Yujuan, G.A.O., Zhang, Q. and Chunming, S.H.I. (2017). Climatic Aftermath of the 1815 Tambora Eruption in China. J. Meteor. Res. 31(1), 28–38.
    14. Cole-Dai, J. (2010). Volcanoes and climate. Wiley Interdisciplinary Reviews. Climate Change, 1(6), 824–839.
    15. Colose, C.M., LeGrande, A.N., and Vuille, M. (2015). The influence of tropical volcanic eruptions on the climate of South America during the last millennium. Climate of the Past, 11, 3375–3424.
    16. Crowley, T.J., and Kim, K.Y. (1999). Modeling the temperature response to forced climate change over the last six centuries. Geophys. Res. Lett., 26, 1901–1904.
    17. Crowley, T.J. (2000). Causes of climate change over the past 1000 years. Science, 289, 270–277.
    18. Esper, J., Schneider, L., Krusic, P.J., Luterbacher, J., Büntgen, U., and Timonen, M. (2013). European summer temperature response to annually dated volcanic eruptions over the past nine centuries. Bulletin of Volcanology, 75(7), 736.
    19. Esper, Jan, Lea Schneider, Paul J. Krusic, Jürg Luterbacher,  Ulf Büntgen,  Mauri Timonen, Frank Sirocko, Eduardo Zorita, (2013). European summer temperature response to annually dated volcanic eruptions over the past nine centuries, Bull Volcanol. 75: 736, 2-14, DOI: 10.1007/s00445-013-0736-z.
    20. Fischer, E.M., Luterbacher, J., Zorita, E., Tett, S.F.B., Casty, C. and Wanner, H. (2007). European climate response to tropical volcanic eruptions over the last half millennium. Geophysical Research Letters, 34(5) Washington, D.C. American Geophysical Union, 10.1029/2006GL027992
    21. Fischer, E.M., Luterbacher, J., Zorita, E., Tett, S.F.B., Casty, C., and Wanner, H. (2007). European climate response to tropical volcanic eruptions over the last half millennium, Journal of Geophysical Research LETTERS, 34, 1-6, L05707.
    22. Gagné, M.-E., Kirchmeier-Young, M.C., Gillett, N.P., and Fyfe, J.C. (2017). Arctic sea ice response to the eruptions of Agung, El Chichn, and Pinatubo. Journal of Geophysical Research: Atmospheres, 122, 8071–8078.
    23. Gil, Guirado, S., Olcina, Cantos, J., and Pérez, Morales, A. (2020). The blessing of the “year without summer”: Climatic and socioeconomic impact of the Krakatoa eruption (1883) in the south‐east of the Iberian Peninsula. International Journal of Climatology, 41(4): (2279-2300).
    24. Hansen, J.E., Wang, W-C., and Lacis, A.A. (1978). Mount Agung eruption provides a test of a global climatic perturbation. Science, 199, 1065–1068
    25. Hegerl, G., Luterbacher, J., González-Rouco, F., Tett SFB, Crowley, T.J., Xoplaki, E (2011). Influence of human and natural forcing on European seasonal temperatures. Nat Geosci 4:99–103
    26. Hegerl, G., Luterbacher, J., González-Rouco, F., Tett, S.F.B., Crowley, T.J., and Xoplaki, E. (2011). Influence of human and natural forcing on European seasonal temperatures. Nat Geosci, 4, 99–103
    27. Hegerl, G.C., Crowley, T.S., Baum, S.K., Kim, K-Y., and Hyde, W.T. (2003). Detection of volcanic, solar and greenhouse gas signals in pale reconstructions of Northern Hemispheric temperature. Geophys Res Lett 30. DOI:10.1029/2002GL016635.
    28. Iles, C.E., and Hegerl, G.C. 2014. The global precipitation response to volcanic eruptions in the CMIP5 models. Environ. Res. Lett., 9(10), 104012.
    29. Jessica, P., and Stefan, G. 2020. Potential impacts of major nineteenth century volcanic eruptions on temperature over Cape Town, South Africa: 1834–1899. Climatic Change, https://doi.org/10.1007/s10584-020-02678-6.
    30. lobal Volcanism Program. 2013. Volcanoes of the world, v. 4.7.4.Venzke, E (ed.). Smithsonian Institution. Downloaded 30 October 2018. https://doi.org/10.5479/si.GVP.VOTW4-2013.
    31. Lockwood, J.P., and Hazlett, R.W. (2010). Volcanoes – Global Perspectives. Wiley-Blackwell, West Sussex.
    32. Lough, J.M., and Fritts, H.C. 1987. An assessment of the possible effects of volcanic eruptions on North American climate using tree-ring data, 1602 to 1900 A.D. Climatic Change,10, 219–239.
    33. Madden-Nadeau, A.L., Cassidy, M., Pyle, D.M., Mather, T.A., Watt, S.F.L., Engwell, S.L., Abdurrachman, M., Nurshal, M.E.M., Tappin, D.R., and Ismail, T. (2021). The magmatic and eruptive evolution of the 1883 caldera-forming eruption of Krakatau: Integrating field- to crystal-scale observations. Journal of Volcanology and Geothermal Research, 411,107176.
    34. Man, W., Zhou, T., and Jungclaus, J.H. (2014). Effects of Large Volcanic Eruptions on Global Summer Climate and East Asian Monsoon Changes during the Last Millennium: Analysis of MPI-ESM Simulations. Journal of Climate, 27(19), 7394–7409.
    35. Meronen, HHenriksso, S.V., Raisanen, P.R., and Laaksonen, A. (2012). Climate effects of northern hemisphere volcanic eruptions in an Earth System Model. Atmospheric Research, 114–115, 107–118.
    36. Newhall, C.G., and Self, S. (1982). The Volcanic Explosivity Index (VEI): an estimate of explosive magnitude for historical volcanism. J Geophys Res, 87, 1231–1238.
    37. Newhall, C.G., and Self, S. (1982). The Volcanic Explosivity Index (VEI): an estimate of explosive magnitude for historical volcanism. J Geophys Res, 87, 1231–1238.
    38. Niemeier, U., and Timmreck, C. (2015). What is the limit of climate engineering by stratospheric injection of SO2?. Atmos Chem Phys, 15(16), 9129–9141.
    39. Oman, L., Robock, A, Stenchikov, G, Schmidt, G.A., and Ruedy, R. (2005). Climatic response to high-latitude volcanic eruptions. J Geophys Res, 110:D13103.
    40. Rao, M.P., Cook, B.I., Cook, E.R., D'Arrigo, R.D., Krusic, P.J., Anchukaitis, K.J., LeGrande, A.N., Buckley, B.M., Davi, N.K., Leland, C., Griffin, K.L, (2017). European and Mediterranean hydroclimate responses to tropical volcanic forcing over the last millennium 44 (10):5104 Geophysical Research Letters.
    41. Robock, A. (2000). Volcanic eruptions and climate. Reviews of Geophysics, 38(2), 191–219.
    42. Robock, A. (2015). Climatic impacts of volcanic eruptions, Chapter 53 in Encyclopedia of Volcanoes, Second Edition, Haraldur Sigurdsson (editor-in-chief), Bruce Houghton, Stephen R. McNutt, Hazel Rymer and John Styx (editors) (Elsevier, Amsterdam), 935-942.
    43. Robock, A. (1981). A latitudinally dependent volcanic dust veil index, and its effect on climate simulations. J. Volcanol. Geotherm. Res., 11, 67-80.
    44. Robock, A., and Mao, J. (1995). The volcanic signal in surface temperature observations. J Clim. 8,1086–1103
    45. Robock, A., and Mao, J. (1995). The Volcanic Signal in Surface Temperature Observations. Journal of Climate, 8(5), 1086–1103.
    46. Self, S., and King, A.J. (1996). Petrology and sulfur and chlorine emissions of the 1963 eruption of Gunung Agung, Bali, Indonesia. Bull Volcanol, 58,263–285.
    47. Self, S., and Rampino, M.R. 2012. The 1963–1964 eruption of Agung volcano (Bali, Indonesia). Bull Volcanol, 74, 1521–1536
    48. Shindell, D. T., Schmidt, G. A., Mann, M.E., and Faluvegi, G. 2004. Dynamic winter climate response to large tropical volcanic eruptions since 1600. Journal of Geophysical Research, VOL. 109, D05104,
    49. Sigl, M., Winstrup, M., McConnell, J.R., Welten, K.C., Plunkett, G., Ludlow, F., and Woodruff, T.E. 2015. Timing and climate forcing of volcanic eruptions for the past 2,500 years. Nature, 523(7562), 543–549.
    50. Sjolte, J., Adolphi, F., Guðlaugsdòttir, H., and Muscheler, R. 2021. Major Differences in Regional Climate Impact Between High and Low‐Latitude Volcanic Eruptions. Geophysical Research Letters, 48, 8.
    51. Sutherland, E.K., Brewer, P.W., Falk, D.A. and Vel_asquez, M.E., 2015. Fire History Analysis and Exploration System (FHAES) user manual. [compiled on 01/03/2018]. http://www.fhaes.org. pp68.
    52. Tao, H., Qiu, Z., Lu, B., Liu, Y., and Qiu, J. 2020. Volcanic activities triggered the first global cooling event in the Phanerozoic. Journal of Asian Earth Sciences, 194, 104074.
    53. Wahl, Eugene R. HenryF.Diaz, Smerdon, J.E., and Ammann, C.M. 2014. Late winter temperature response to large tropical volcanic eruptions in temperate western North America: Relationship to ENSO phases. Global and Planetary Change, 122, 238–250.