Assess the effect of climate change on precipitation and temperature using AR4 models (Case Study: Gharasoo Basin of Kermanshah province)

Document Type : Original Article

Authors

1 Department of Geography,Faculty of Management, Police University, Tehran

2 graduated of water engineering Isfahan university

10.30488/ccr.2022.319044.1061

Abstract

Industrial growth, deforestation and destruction of the environment increased the greenhouse gases in recent decades. Increase the concentration of greenhouse gases lead to rise in temperature of the earth's atmosphere globally which called global warming. These effects not only change the temperature of the atmosphere, but also have influence on other climatic parameters which called climate change. This study investigated the effects of climate change on the basin Gharasoo in periods of 30 years (2044-2015) and (20740245) has been done. 10 GCM models set of models AR4 to study climate change used in this study. 6 stations for temperature changes And 9 stations were chosen for the study precipitation changes. Based on the performance of GCM to forecast temperature and, precipitation. The weighting models based on their weight is defined the average pattern for all these models. And the emission scenarios A2 and B1, daily temperature and precipitation data were generated using LARS-WG model. Then, using the IDW method for regional meteorological data were converted. Results showed that among the ten GCM models weighted average model Model IPSL CM4.0 greatest accuracy in estimated temperature and GISS-ER models the most accurate estimated rainfall in the entire Gharasoo basin showed. Also the results related to changes in temperature and precipitation showed the summer and spring, respectively, the highest temperature rise in the near future two terms (2044-2015) and far future (2074-2045) for both A2 and B2, respectively. And winter had the highest decrease precipitation.

Keywords


  1. . آذرانفر،آرش. ابریشمچی، احمد و مسعود تجریشی. 1385. ارزیابی تغییرات بارش و دما بر تغییر اقلیم با استفاده از خروجی مدل‌های چرخش عمومی، دومین کنفرانس مدیریت منابع آب، دانشگاه صنعتی اصفهان.

    1. اسماعیلی، رضا. گندمکار،امیر وحسنعلی غیور. 1391. پهنه­بندی میزان تغییرات اقلیمی از دیدگاه کشاورزی در دوره اقلیمی آینده مطالعه موردی: استان خراسان رضوی، جغرافیا و برنامه­ریزی محیطی، 22:35-52.
    2. 3. شاه­کرمی، نازنین. 1388. ارائه راهکارهای تطبیق با تغییر اقلیم با دخالت تحلیل ریسک و مدیریت جامع منابع آب در حوضه زاینده-رود ایران، رساله دکتری سازه­های آبی به راهنمایی:علیرضا مساح بوانی، دانشگاه تربیت مدرس.
    3. گوهری، علیرضا. 1392. ارایه راهکارهای سازگاری با سطوح احتمالی مختلف تأثیر تغییر اقلیم بر منابع آب حوضه زاینده­رود با رویکرد دینامیک سیستمها، رساله دکتری مهندسی آب، دانشکده کشاورزی، دانشگاه صنعتی اصفهان.
    4. Bates, B., Kundzewicz, Z.W., Wu, S. and Palutikof, J. (20080. Climate Change and Water. Intergovernmental Panel on Climate Change (IPCC), 200 pages.

    6.Beecham, S., Rashid, M. and Chowdhury, R.K. (2014). Statistical downscaling of multi-site daily Rainfall in a South Australian catchment using a Generalized Linear Model. International Journal of Climatology, 34(14): 3654–3670.

    7.Delworth T. L., Broccoli, A.J., A. Rosati, Stouffer, R.J., Balaji, V. and Beesley, J.A. (2006). GFDL's CM2 global coupled climate models, part Ι: formulation and simulation characteristics. J. Clim. 19: 643-674.

    8.Deque, M., Dreveton, C., Braun, A. and Cariolle, D. (1994). The ARPEGE/Ifs atmosphere model: a contribution to French community climate modeling. Clim. Dyn. 10: 249-266.

    9.Diansky N.A., Bagno, A.V. and Zalensny, V.B. (2002). Sigma model of global ocean circulation and its sensitivity to variations in wind stress. Izv. Atmos. Ocean. Phys. 38: 477-494.

    10.Dibike, Y.B. and Coulibaly, P. (2005). Hydrologic impact of climate change in the Saguenay watershed: comparison of downscaling methods and hydrologic models. J. Hydrol. 307: 145-163.

    11.Gordon, C., Cooper, C., Senior, C.A., Banks, H., Gregory, J.M., and Johns T.C. et al. (2000). The simulation of SST, sea ice extents and ocean heat transports in a version of Hadley Center coupled model without flux adjustments. Clim. Dyn. 16: 147-168.

    12.Gordon, H.B., Rotstayn, L.D., McGregor, J.L., Dix, M.R., Kowalczyk, E.A., and O'Farrell, S.P. et al. (2002). The CSIRO Mk3 climate system model (electronic publication). CSIRO Atmospheric Research technical paper, No. 60, Aspendale: CSIRO Atmospheric Research.

    13.Greene, A.M., Goddard, L. and Lall, L. (2006). Probabilistic multi-model regional temperature change projections. J. Clim. 19: 4326-4346

    14.Hashmi M.Z., Shamseldin, A.Y. and Melville, B.W. (2011). Comparison of SDSM and LARS-WG for simulation and downscaling of extreme precipitation events in a watershed. Stoch. Environ. Res. Risk. Asses. 25: 475-484.

    15.IPCC. (2007). Summary for Policymakers in Climate Change, The Physical Science Basis, Contribution of Working Group I to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change, Cambridge University Press, Cambridge. pp. 1-18.

    16.Kiehl J.T., J.J. Hack, G.B., Bonan, B.A., Boville, D.L., Williamson and Rasch, P.J. (1998). The National Center for Atmospheric Research Community Climate Model: CCM3. J. Clim. 11: 1131-1149.

    17.Kim, B.S., Kim, H.S., Seoh, B.H. and Kim, N.W. (2007). Impact of climate change on water resources in Yongdam Dam Basin, Korea. Stochastic Environmental Research and Risk Assessment, 21: 355–373.

    18.Lane, M.E., Kirshen, P.H. and Vogel, R.M. (1999). Indicators of impact of global climate change on U.S. water resources. J. Water Resour. Plann. Manage. ASCE. 125: 194-204

    19.Marti, O., Braconnot, P., Bellier, J., and Benshila, R. et al. (2005). The new IPSL climate system model: IPSL-CM4. Institut Pierre Simon Laplace, Paris, 84 pp.

    20.Mason, S.J. 2004. Simulating climate over western North America using stochastic weather generators. Clim. Change. 62: 155-187.

    21.Maurer, E.P. (2009). Climate model based consensus on the hydrologic impacts of climate change to the Rio Lempa basin of Central America. Hydrol. Earth Syst. Sci. 13: 183-194.

    22.McFarlane N.A., Boer, G.J., Blanchet, J.P. and M. Lazare M. (1992). The Canadian Climate Centre second-generation general circulation model and its equilibrium climate. J. Clim. 5: 1013-1044.

    23.Minville, M., Brissette, F. and Leconte, R. (2008). Uncertainty of the impact of climate change on the hydrology of a Nordic watershed. J. Hydrol. 358: 70-83.

    24.Mitchell J.F.B., Johns, T.C., Eagles, M., Ingram, W.J. and Davis, R.A. (1999). Towards the construction of climate change scenarios. Clim. Change. 41: 547-581.

    25.Morid, S. and Massah Bavani, A.R. (2010). Exploration of potential adaptation strategies to climate change in the Zayandeh Rud irrigation system, Iran. J. Irrig. Drain. ASCE. 59: 226-238.

    26.Wilks, D.S. (1992). Adapting stochastic weather generation algorithms for climate change studies. Climate Change, 22(1): 67–84.

    27.Wolff, J.O., Maier-Raimer, E. and Legutke, S. (1997). The Hamburg ocean primitive equation model. Deutches Klimarechenzentrum Tech. Rep. 13, Hamburg, Germany.

    28.Semenov, M.A. and Barrow, E.M. (2002). LARS-WG a stochastic weather generator for use in climate Impact studies. User Manual, Rothamstead Research, Hertfordshire, 34 pages.

    29.Schmidt G.A., Ruedy, R., Hansen, J.E., Aleinov, I., Bell, N. and Bauer, M. et al. (2006). Present day atmospheric simulations using GISS ModelE: comparison to in-situ, satellite and reanalysis data. J. Clim. 19: 153-192

    30.Strauss, F., Formayer, H. and Schmid, E. (2013). High resolution climate data for Austria in the period 2008–2040 from a statistical climate change model. Int. J. Climatol. 33: 430-443.

    31.Zareian, M. Ja., Eslamian, S. and Safavi, H.R. (2014). A modified regionalization weighting approach for climate change impact assessment at watershed scale. Theoretical and Applied Climatology, Springer-Verlag Wien. PP. 497-516.