Evaluation the performance of three gridded datasets in estimating the time series of extreme precipitation in Iran

Document Type : Original Article

Authors

1 Assistant Prof. of Water Resources Study and Research, Water Research Institute (WRI),

2 M. Sc. Student of water and hydraulic structures, civil engineering, K. N. Toosi University of Technology

Abstract

Despite the existence of studies that have been conducted in the field of evaluating rainfall databases in Iran, there is still a research gap in the field of investigating the accuracy of gridded data in in estimation of extreme precipitation events based on different climatic regions over Iran. In this study the performance of four datasets includes GPM, ERA5, TRMM and PERSIANN-PDIR in estimation of extreme precipitation indices in 145 stations over Iran during 2000-2017 period was investigated. The extreme indices are Rx1day, Rx5day, CDD, CWD, R10mm, R20mm and R95p. Principal component analysis (PCA) method was used to classify the precipitation regions. Based on PCA results, Iran was divided into 6 rainfall regions including (1) Caspian Sea region (2) Northwest (3) West (4) Southwest and coasts of Persian Gulf (5) Northeast (6) Southeast and Center. The efficiency of datasets in estimating daily rainfall was checked based on Pearson correlation coefficient and Percent Bias (PB). The results showed that the GPM, ERA5 and TRMM have good performance in estimating daily rainfall. In the following the efficiency of three mentioned datasets in 6 precipitation areas was examined and the results of this section show that GPM has the highest efficiency and TRMM has the lowest efficiency in estimating the extreme precipitation indices in Iran.

Keywords


  1. مجتبی رحیمی، مرتضی میری، علی اکبر نوروزی (1397). ارزیابی دقت برآورد بارش روزانه پایگاه داده­های TRMM و GPM در مقابل داده­های مشاهده­ای در ایران. نشریه علمی پژوهشی مهندسی و مدیریت آبخیز. 1931 ،4 شماره، 11.
  2. اکبر رحمتی وعلیرضا مساح بوانی (1398). ارزیابی مقایسه­ای پایگاه­های داده جهانی بارش بامقادیر بارش مشاهداتی، مطالعه موردی: حوزه آبریزکارون. تحقیقات منابع آب ایران سال پانزدهم، شمار1.
  3. طیب رضیئی (1395). شناسایی مناطق همگن بارشی ایران با استفاده از روش تحلیل مولفه‌های اصلی. مجله ژئوفیزیک ایران، جلد 10، شماره 3 .
  4. احمد عسگری، فاطمه رحیم‌زاده،ابراهیم فتاحی، نوشین محمدیان (1386). تحلیل روند نمایه­های بارش­های حدی در ایران. تحقیقات منابع آب ایران سال سوم، شماره ۳.
  5. سید ابوالفضل مسعودیان (1388). نواحی بارشی ایران. جغرافیا و توسعه، شماره 13
  6. Ahmed, K., Shahid, S., Wang, X., Nawaz, N., and Khan, N. (2019). Evaluation of gridded precipitation datasets over arid regions of Pakistan. Water, 11(2): 210.
  7. Alijanian, M., Rakhshandehroo, G.R., Mishra, A.K., and Dehghani, M. (2017). Evaluation of satellite rainfall climatology using CMORPH, PERSIANN‐CDR, PERSIANN, TRMM, MSWEP over Iran. Int. J. Climatol., 37(14): 4896-4914.
  8. Alizadeh-Choobari, O., Adibi, P., and Irannejad, P. (2018). Impact of the El Niño–Southern Oscillation on the climate of Iran using ERA-Interim data. Clim. Dyn., 51(7): 2897-2911.
  9. Blacutt, L.A., Herdies, D.L., De Gonçalves, L.G.G., Vila, D.A., and Andrade, M. (2015). Precipitation comparison for the CFSR, MERRA, TRMM3B42 and Combined Scheme datasets in Bolivia. Atmospheric Research, 163: 117-131.
  10. Chen, L.J., Chen, D.L., Wang, H.J., Yan, J. H. (2009). Regionalization of precipitation regimes in China: Atmospheric and Oceanic Science Letters, 2(5): 301−307.
  11. Collins, B., Ramezani Etedali, H., Tavakol, A., and Kaviani, A. (2021). Spatiotemporal variations of evapotranspiration and reference crop water requirement over 1957–2016 in Iran based on CRU TS gridded dataset. Journal of Arid Land, 13(8): 858-878.
  12. Colston, J.M., Ahmed, T., Mahopo, C., Kang, G., Kosek, M., de Sousa Junior, F., ... and The, M.E. (2018). Evaluating meteorological data from weather stations, and from satellites and global models for a multi-site epidemiological study. Environmental research, 165: 91-109.
  13. Dahri, Z.H., Ludwig, F., Moors, E., Ahmad, S., Ahmad, B., Shoaib, M., ... and Kabat, P. (2021). Spatio‐temporal evaluation of gridded precipitation products for the high‐altitude Indus basin. International Journal of Climatology.
  14. Darand, M., and Khandu, K. (2020). Statistical evaluation of gridded precipitation datasets using rain gauge observations over Iran. Journal of Arid Environments, 178: 104172.
  15. Fallah, A., Rakhshandehroo, G.R., Berg, P., O.S., and Orth, R. (2020). Evaluation of precipitation datasets against local observations in southwestern Iran. International Journal of Climatology, 40(9): 4102-4116.
  16. Gupta, V., Jain, M.K., Singh, P.K., and Singh, V. (2020). An assessment of global satellite‐based precipitation datasets in capturing precipitation extremes: A comparison with observed precipitation dataset in India. International Journal of Climatology, 40(8): 3667-3688.
  17. Hamal, K., Khadka, N., Rai, S., Joshi, B.B., Dotel, J., Khadka, L., ... and Shrestha, D. (2020). Evaluation of the TRMM Product for Spatio-temporal Characteristics of Precipitation over Nepal (1998-2018). Journal of Institute of Science and Technology, 25(2): 39-48.
  18. Hersbach, H. et al. (2020). The ERA5 Global Reanalysis. Quarterly Journal of the Royal Meteorological Society, 146: 1999-2049.
  19. Hu, G., and Franzke, C.L. (2020). Evaluation of daily precipitation extremes in reanalysis and gridded observation‐based data sets over Germany. Geophysical Research Letters, 47(18): e2020GL089624.
  20. Hu, Z., Zhou, Q., Chen, X., Li, J., Li, Q., Chen, D., ... and Yin, G. (2018). Evaluation of three global gridded precipitation data sets in central Asia based on rain gauge observations. International Journal of Climatology, 38(9): 3475-3493.
  21. Huffman, G. J. (2016). The transition in multi-satellite products from TRMM to GPM (TMPA to IMERG). NASA Goddard Space Flight Center and Science Systems and Applications. 27th august.
  22. Katiraie-Boroujerdy, P.S., Nasrollahi, N., Hsu, K.L., and Sorooshian, S. (2016). Quantifying the reliability of four global datasets for drought monitoring over a semiarid region. Theoretical and applied climatology, 123(1-2): 387-398.
  23. Katsanos, D. et al., 2016. Analysis of precipitation extremes based on satellite (CHIRPS) and in situ dataset over Cyprus. Nat. Hazards 83 (1): 53–63.
  24. Khan, N., Shahid, S., Ismail, T., Ahmed, K., and Nawaz, N. (2019). Trends in heat wave related indices in Pakistan. Stochastic environmental research and risk assessment, 33(1): 287-302.
  25. Kiany, M.S.K., Masoodian, S.A., Balling Jr, R.C., and Montazeri, M. (2020). Evaluation of the TRMM 3B42 product for extreme precipitation analysis over southwestern Iran. Advances in Space Research, 66(9): 2094-2112.
  26. Nguyen, P., Ombadi, M., Gorooh, V.A., Shearer, E. J., Sadeghi, M., Sorooshian, S., ... and Ralph, M.F. (2020). PERSIANN Dynamic Infrared–Rain Rate (PDIR-Now): A Near-Real-Time, Quasi-Global Satellite Precipitation Dataset. Journal of hydrometeorology, 21(12): 2893-2906.
  27. Nikolopoulos, E.I., Anagnostou, E.N., and Borga, M. (2013). Using high-resolution satellite rainfall products to simulate a major flash flood event in northern Italy. Journal of Hydrometeorology, 14(1): 171-185.
  28. Sheskin, D. 2007. Handbook of Parametric and Nonparametric Statistical Procedures: Chapman & Hall/CRC, 1736 pp.
  29. Sun, Q., Miao, C., Duan, Q., Ashouri, H., Sorooshian, S., and Hsu, K.L. (2018). A review of global precipitation data sets: Data sources, estimation, and intercomparisons. Reviews of Geophysics, 56(1): 79-107.
  30. Tian, Y., Peters-Lidard, C.D., Choudhury, B. J., and Garcia, M. (2007). Multitemporal analysis of TRMM-based satellite precipitation products for land data assimilation applications. Journal of Hydrometeorology, 8(6): 1165-1183.
  31. Wang, G., Zhang, X., and Zhang, S. (2019). Performance of three reanalysis precipitation datasets over the qinling-daba Mountains, eastern fringe of tibetan plateau, China. Advances in Meteorology.
  32. Xia, X. H., Wu, Q., Mou, X.L., and Lai, Y.J. (2015). Potential impacts of climate change on the water quality of different water bodies. J. Environ. Inform, 25(2): 85-98.
  33. Yang, Y., Wang, G., Wang, L., Yu, J., and Xu, Z. (2014). Evaluation of gridded precipitation data for driving SWAT model in area upstream of three gorges reservoir. PLoS One, 9(11): e112725.
  34. Zhang, X., Alexander, L., Hegerl, G.C., Jones, P., Tank, A.K., Peterson, T.C., ... and Zwiers, F.W. (2011). Indices for monitoring changes in extremes based on daily temperature and precipitation data. Wiley Interdisciplinary Reviews: Climate Change, 2(6): 851-870.