Studying the trend of Temporal and Spatial Changes in Extreme Quantiles of Minimum and Maximum Temperature in Iran

Document Type : Original Article

Authors

1 Associate Professor of Water Engineering Department, Faculty of Water and Soil Engineering, Gorgan University of Agricultural Sciences and Natural Resource, Golestan, Iran

2 Ph.D. Candidate of Agricultural Meteorology, Department of Water Engineering, Sari University of Agricultural Sciences and Natural Resources, Sari, Iran

Abstract

Climate change is a condition that refers to any change in climate that occurs over time. These changes may not be seen in the average of the data series but occur in quantiles of the series with different intensities that can be examined by quantile regression. In this research, to investigate Spatio-temporal changes of maximum and minimum temperature in different seasons in Iran, after fitting quantile regression on 102 meteorological stations with the statistical period of 2016-1986, the slope of the trend was calculated in the different quantiles, and by comparing its results with the results of the ordinary linear regression, they were spatially zoned. The results showed that in the spring season, the highest slope of the increasing trend is in the lower quantiles and the eastern half of Iran, but in the winter season, it was in the middle and upper quantiles and the northwest and west of Iran. In the summer season, the lower quantiles had an increasing trend, but in the autumn season, they had a decreasing trend. However, in spring and summer, the lower quantiles of daily temperature and in autumn and winter, the upper quantiles increased more strongly. Also, the comparison of the two regression methods shows that most of the quantiles had a slope different from the slope of the least square regression, and it’s not correct to assign the slope of the ordinary square regression line for the trend of temperature changes in the whole series. Finally, it can be stated that climate change has occurred in the maximum and minimum daily temperatures in Iran, but the intensity of these changes varies according to different seasons, quantiles, and locations.

Keywords


  1. حجازی زاده، زهرا؛ حلبیان، امیرحسین؛ کربلائی درئی، علیرضا؛ طولابی نژاد، میثم (1399). واکاوی تغییرات مقادیر حدی بارش در گستره ی ایران زمین، مخاطرات محیط طبیعی، دوره 9، شماره 23، صص 135-150.
  2. عساکره، حسین؛ ورناصری قندعلی، نسرین (1398). واکاوی تغییرات مقدار، فراوانی، و شدت بارش‏ سالانۀ ناحیۀ خزری طی دورۀ آماری 1966-2016، پژوهش های جغرافیای طبیعی، دوره 51، شماره 2، صص 335-352.
  3. کامیابی، سعید؛ عبدی، کمیل (1399). آشکارسازی و تحلیل روند تغییرات اقلیم (بارش و دما) در محدوده ساری، فصلنامه علوم و تکنولوژی محیط زیست، دوره 22، شماره 7، صص 165-179.
  4. Abbas, S.A., Xuan, Y., and Song, X. (2019). Quantile Regression Based Methods for Investigating Rainfall Trends Associated with Flooding and Drought Conditions. Water Resource Management, 33: 4249-4264.
  5. Adnan, S., Ullah, K., and Ahmed, R. (2020). Variability in meteorological parameters and their impact on evapotranspiration in a humid zone of Pakistan. Journal of Meteorological Applications, 27(2): 1-10.
  6. Ahmadi, F., Nazeri Tahroudi, M., Mirabbasi, R., Khalili, K., and Jhajharia, D. (2018). Spatiotemporal trend and abrupt change analysis of temperature in Iran. Meteorological Applications, 25(2): 314-321.
  7. Alhaji, U.U., Yusuf, A.S., Edet, C.O., Oche, C.O., and Agbo, E.P. (2018). Trend analysis of temperature in Gombe state using mann kendall trend test. Journal of Scientific Research and Reports, 20(1): 1-9.
  8. Bannayan, M., Asadi, S., Nouri, M., and Yaghoubi, F. (2020). Time trend analysis of some agroclimatic variables during the last half century over Iran. Theoretical and Applied Climatology, 1-19.
  9. Benoit, D.F. and Poel, D.V., (2017). BayesQR: a Bayesian approach to quantile regression. Journal of Statistical Software, 76(7): 2-32.
  10. Caloiero, T. (2017). Trend of monthly temperature and daily extreme temperature during 1951–2012 in New Zealand. Theoretical and Applied Climatology, 129(1): 111-127.
  11. ‏Chen, W., Cui, H., and Ge, Q. (2021). The spatial and seasonal dependency of daily precipitation extremes on the temperature in China from 1957 to 2017. International Journal of Climatology.
  12. Da Rocha Júnior, R.L., Dos Santos Silva, F.D., Lisboa Costa, R., Barros Gomes, H., Herdies, D.L., Rodrigues da Silva, V.D.P., and Candido Xavier, A. (2019). Analysis of the Space–Temporal Trends of Wet Conditions in the Different Rainy Seasons of Brazilian Northeast by Quantile Regression and Bootstrap Test. Geosciences, 9(11): 457.
  13. Diaz, H.F. and Murnane R.J. (2008). Climate extremes and society. Cambridge University Press.
  14. Donner, R.V., Ehrcke, R., Barbosa, S.M., Wagner, J. Donges, J.F., and Kurths J. (2012). Spatial patterns of linear and nonparametric long-term trends in Baltic sea-level variability. Nonlinear Processes Geophys, 19(95-111): 95-111.
  15. Duan, Q., McGrory, C.A., Brown, G., Mengersen, K., and Wang, Y.G. (2021). Spatio-temporal quantile regression analysis revealing more nuanced patterns of climate change: a study of long-term daily temperature in Australia. arXiv preprint arXiv:2103.05791.
  16. Dunn, R.H., Willett, K.M., and Parker E.P. (2019). Changes in statistical distributions of sub-daily surface temperatures and wind speed. Journal of Eearth System Dynamics, 10(4): 765-788.
  17. Fallah-Ghalhari, G., Shakeri, F., and Dadashi-Roudbari, A. (2019). Impacts of climate changes on the maximum and minimum temperature in Iran. Theoretical and Applied Climatology, 138(3): 1539-1562.
  18. Farooq, I., Shah, A.R., Salik, K.M., and Ismail, M. (2021). Annual, Seasonal and Monthly Trend Analysis of Temperature in Kazakhstan During 1970–2017 Using Non-parametric Statistical Methods and GIS Technologies. Earth Systems and Environment, 1-21.
  19. Fathian, F., Ghadami, M., Haghighi, P., Amini, M., Naderi, S., and Ghaedi, Z. (2020). Assessment of changes in climate extremes of temperature and precipitation over Iran. Theoretical and Applied Climatology, 141: 1119-1133.
  20. Gao, M., and Franzke, C. (2017). Quantile Regression-based Spatio-temporal Analysis of Extreme Temperature Change in China. Journal of Climate, 30: 9897-9914.
  21. Gonzalez‐Hidalgo, J.C., Peña‐Angulo, D., Brunetti, M., and Cortesi, N. (2015). MOTEDAS: a new monthly temperature database for mainland Spain and the trend in temperature (1951–2010). International Journal of Climatology, 35(15): 4444-4463.
  22. Haugen, M.A., Stein, M.L., and Moyer, E.J. (2018). Estimating Changes in Temperature Distributions in a Large Ensemble of Climate Simulations Using Quantile Regression. Journal of CLIMATE, 31: 8573-8588.
  23. Ilori, O.W., and Ajayi, V.O. (2020). Change detection and trend analysis of future temperature and rainfall over West Africa. Earth Systems and Environment, 4(3): 493-512.
  24. Kalisa, W., Igbawua, T., Ujoh, F., Aondoakaa, I.S., Namugize, J.N., and Zhang, J. (2021). Spatio-temporal variability of dry and wet conditions over East Africa from 1982 to 2015 using quantile regression model. Natural Hazards, 1-30.
  25. Kendall, M.G. (1975). Rank Auto-correlation Methods, Charles Griffin, London.
  26. Koenker, R. (2005). Quantile Regression. first ed, New York, Cambridge University Press, 2005, 1-25.
  27. Koenker, R. (2006). Quantile regression in R: A vignette. [Available online at http://www.econ.uiuc.edu/~roger/research/rq/vig.pdf.]
  28. Koenker, R., (2018). Quantreg: Quantile regression and related methods, version 5.54. R package, https://cran.r-project.org/web/packages/quantreg/quantreg.pdf.
  29. Koenker, R., and Bassett, G. (1978). Regression Quantils. Econometrica, 46: 33-50.
  30. Koenker, R., and D’Orey, V. (1987). Algorithm AS 229: Computing regression quantiles. Journal of the Royal Statistical Society. Series C (Applied Statistics), 36: 383-393. https://doi.org/10.2307/2347802.
  31. Lausier, A.M., and Jain, S. (2018). Overlooked trends in observed global annual precipitation reveal underestimated risks. Scientific Reports, 8: 16746.
  32. Lee, K., Baek, H.J., and Cho, C. (2013). Analysis of changes in extreme temperatures using quantile regression. Asia-Pacific Journal of Atmospheric Sciences, 49(3): 313-323.‏
  33. Mann, H.B. (1945). Nonparametric Tests Against Trend Econometrica. Journal of the Econometric Society, 245-259.
  34. Modarres, R., Sarhadi, A., and Burn, D.H. (2016). Changes of extreme drought and flood events in Iran. Glob Planet Chang, 144: 67-81.
  35. Mohammad, P., and Goswami, A. (2019). Temperature and precipitation trend over 139 major Indian cities: An assessment over a century. Modeling Earth Systems and Environment, 5(4): 1481-1493.
  36. Nian, D., Linz, M.K., Mooring, T.A., and Fu, Z. (2020, December). The changing extreme values of summer relative humidity in the Tarim Basin in northwestern China. Climate Dynamics, 58: 3527-3540.
  37. Pachauri, R., and Meyer, L. Eds., (2014). Climate Change 2014: Synthesis Report. Contribution of Working Groups I, II and III to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change [Core Writing Team, R.K. Pachauri and L.A. Meyer (eds.)]. IPCC, Geneva, Switzerland, 151 pp.
  38. Pachauri, R.K., and Reisinger, A. Eds., (2007). Climate change 2007. Synthesis report. Contribution of Working Groups I, II and III to the fourth assessment report of the Intergovernmental Panel on Climate Change [Core Writing Team, Pachauri, R.K and Reisinger, A. (eds.)]. IPCC, Geneva, Switzerland, 104 pp.
  39. Paik, S., and Min, S.K. (2020). Quantifying the anthropogenic greenhouse gas contribution to the observed spring snow cover decline using the cmip6 multi-model ensemble. Journal of Climate. 33(21): 9261-9269.
  40. Rahimi, M., and Hejabi, S. (2018). Spatial and temporal analysis of trends in extreme temperature indices in Iran over the period 1960–2014. International Journal of Climatology, 38(1): 272-282.
  41. Sadeqi, A., and Kahya, E. (2021). Spatiotemporal analysis of air temperature indices, aridity conditions, and precipitation in Iran. Theoretical and Applied Climatology, 145(1): 703-716.
  42. Saleem, A.S., Shamsuddin, Sh., Tarmizi, I., Kamal, A., and Xio-Jun, W. (2018). Selection of Climate Models for Projection of Spatiotemporal Changes in Temperature of Araq With Uncertainties. Atmospheric Research, (213): 509-522.
  43. Sharafi, S., and Karim, N.M. (2020). Investigating trend changes of annual mean temperature and precipitation in Iran. Arabian Journal of Geosciences, 13(16): 1-11.
  44. Solaimani, K., Habaibnejad, M., and Pirnia, A. (2021). Temporal trends of hydro-climatic variables and their relevance in water resource management. International Journal of Sediment Research, 36(1): 63-75.
  45. Spinoni, J., and Coauthors, 2020: Future global meteorological drought hot spots: A study based on cordex data. Journal of Climate, 33(9): 3635-3661.
  46. Wang, K., Fu, W., Chen, T., Zhang, B., Xiong, D., and Fang, P. (2020). A compound framework for wind speed forecasting based on comprehensive feature selection, quantile regression incorporated into convolutional simplified long short-term memory network and residual error correction. Energy Conversion and Management, 222: 113234.
  47. Yu, K.M., Lu, Z.D., and Stander, L.J. (2003). Quantile regression: Applications and current research areas. Journal of the Royal Statistical Society: Series D (The Statistician), 52(3): 331-350.
  48. Zhang, S., Gan, T.Y., and Bush, A.B. (2020). Variability of arctic sea ice based on quantile regression and the teleconnection with large-scale climate patterns. Journal of Climate, 33(10): 4009-4025.
  49. Zhang, Y., Shen, X., and Fan, G. (2021). Elevation-Dependent Trend in Diurnal Temperature Range in the Northeast China during 1961-2015. Atmosphere, 12(3): 319.