An investigation of the relationship between atmospheric boundary layer height changes and air pollution variables in the cities of Isfahan

Document Type : Original Article

Authors

1 Associate Professor of Climatology, Department of Geography, Golestan University, Gorgan

2 Master student of Climatology, Golestan University

Abstract

The role of atmospheric boundary layer height in urban microclimate is one of the most important topics. As a consequence of planetary climate change and human intervention and activities in urban settings, this part of the climate is affected. When its height increases or decreases, some atmospheric polluting variables become more relevant, including nitrogen dioxide (NO2), sulfur dioxide (SO2), and aerosol index (AI). In this study, we evaluated the daily monitoring of Sentinel-5P for a period of four years in Isfahan's cities. After comparing the relative frequency of the variables above and below the boundary layer threshold of 750 meters, we identified the effect of the height of the boundary layer on the variables. Results indicate that the highest concentrations of aerosol index (AI) are observed in urban areas of Isfahan province above the threshold of 750 meters. In this case, nitrogen dioxide (NO2) and sulfur dioxide (SO2) gases are completely different, but the decrease in height of the boundary layer indicates their frequency. Statistically, the Kappa coefficient reveals a high number of internal inconsistencies for all three variables above and below 750 meters of the boundary layer. Also, the weighting done in these two floors also completely reveals the difference in weights.

Keywords


  1. Arruda Moreira, G., Guerrero Rascado, J.L., Bravo Aranda, J.A., Foyo Moreno, I., Cazorla, A., Alados-Arboledas, I., ... & Alados Arboledas, L. (2020). Study of the planetary boundary layer height in an urban environment using a combination of microwave radiometer and ceilometer.
  2. Angevine, W. M., White, A. B., Senff, C. J., Trainer, M., Banta, R. M., & Ayoub, M. A. (2003). Urban–rural contrasts in mixing height and cloudiness over Nashville in 1999. Journal of Geophysical Research: Atmospheres, 108(D3).
  3. Baghrabadi (2022). Investigating the trend of tropospheric NO2 changes in Kermanshah using the OMI sensor and its relationship with meteorological parameters. Environmental Research and Technology, 9(9).
  4. Bahrami Asl, Farshad, Molimmoudi, Mohammad, & Selahshor Arin. (2017). Estimation of the number of diseases and deaths attributed to SO2 and NO2 pollutants using the AirQ model in Hamadan city. Avicenna Journal of Clinical Medicine, 23(4), 314-322
  5. Barlow, J. F. (2014). Progress in observing and modelling the urban boundary layer. Urban Climate, 10, 216-240.
  6. Barlow, J. F., Halios, C. H., Lane, S. E., & Wood, C. R. (2015). Observations of urban boundary layer structure during a strong urban heat island event. Environmental Fluid Mechanics, 15(2), 373-398.
  7. Bossioli, E., Tombrou, M., Dandou, A., Athanasopoulou, E., & Varotsos, K. V. (2009). The role of planetary boundary-layer parameterizations in the air quality of an urban area with complex topography. Boundary-layer meteorology, 131(1), 53-72.
  8. Chen, L., Zhang, M., Zhu, J., Wang, Y., & Skorokhod, A. (2018). Modeling impacts of urbanization and urban heat island mitigation on boundary layer meteorology and air quality in Beijing under different weather conditions. Journal of Geophysical Research: Atmospheres, 123(8), 4323-4344.
  9. Cooper, D. I., & Eichinger, W. E. (1994). Structure of the atmosphere in an urban planetary boundary layer from lidar and radiosonde observations. Journal of Geophysical Research: Atmospheres, 99(D11), 22937-22948.
  10. Du, C., Liu, S., Yu, X., Li, X., Chen, C., Peng, Y., ... & Wang, F. (2013). Urban boundary layer height characteristics and relationship with particulate matter mass concentrations in Xi’an, central China. Aerosol and Air Quality Research, 13(5), 1598-1607.
  11. Grossman-Clarke, S., Liu, Y., Zehnder, J. A., & Fast, J. D. (2008). Simulations of the urban planetary boundary layer in an arid metropolitan area. Journal of Applied Meteorology and Climatology, 47(3), 752-768.
  12. Guimarães, P., Ye, J., Batista, C., Barbosa, R., Ribeiro, I., Medeiros, A., ... & T. Martin, S. (2020). Vertical profiles of atmospheric species concentrations and nighttime boundary layer structure in the dry season over an urban environment in central Amazon collected by an unmanned aerial vehicle. Atmosphere, 11(12), 1371.
  13. Kamasi Fatemeh, Ali Akbari Bidakhti, Abbas Ali, & Thabet Kadam Samaneh. (2016) SPATIAL DISTRIBUTION OF THE ATMOSPHERIC MIXED-LAYER DEPTH OVER TEHRAN USING NUMERICAL SIMULATIONS. Journal of Earth and Space Physics. Volume 43, Number 3. Pages 553-568.
  14. Khosh Sima, Massoud, Thabit Kadam, Ahmadi Givi, Farhang, & Ali Akbari Bidakhti. (2015). The Role of Atmospheric Boundary Layer Height on Remote Sensing Indices: Relationship between PM10 Concentraition and Aerosol Optical Depth. Climatology Research, 2014(21), 8-1
  15. Li, X., Hu, X. M., Ma, Y., Wang, Y., Li, L., & Zhao, Z. (2019). Impact of planetary boundary layer structure on the formation and evolution of air-pollution episodes in Shenyang, Northeast China. Atmospheric Environment, 214, 116850.
  16. Lin, C. Y., Chen, F., Huang, J. C., Chen, W. C., Liou, Y. A., Chen, W. N., & Liu, S. C. (2008). Urban heat island effect and its impact on boundary layer development and land–sea circulation over northern Taiwan. Atmospheric Environment, 42(22), 5635-5649.
  17. Liu, Q., Jia, X., Quan, J., Li, J., Li, X., Wu, Y., ... & Liu, Y. (2018). New positive feedback mechanism between boundary layer meteorology and secondary aerosol formation during severe haze events. Scientific reports, 8(1), 1-8.
  18. Luan, T., Guo, X., Guo, L., & Zhang, T. (2018). Quantifying the relationship between PM 2.5 concentration, visibility and planetary boundary layer height for long-lasting haze and fog–haze mixed events in Beijing. Atmospheric Chemistry and Physics, 18(1), 203-225.
  19. Mehdian Mahfrozi, Shamsipour, Ahmadabad Karimi, Zavarreza, & Peyman. (2020). Annual changes in the height of the boundary layer of Tehran city. Natural Geography Research, 52(1), 37-50.
  20. Miao, Y., Che, H., Liu, S., & Zhang, X. (2022). Heat stress in Beijing and its relationship with boundary layer structure and air pollution. Atmospheric Environment, 119159.
  21. Miao, Y., Che, H., Zhang, X., & Liu, S. (2021). Relationship between summertime concurring PM2. 5 and O3 pollution and boundary layer height differs between Beijing and Shanghai, China. Environmental Pollution, 268, 115775.
  22. Miao, Y., Li, J., Miao, S., Che, H., Wang, Y., Zhang, X., ... & Liu, S. (2019). Interaction between planetary boundary layer and PM2. 5 pollution in megacities in China: a review. Current Pollution Reports, 5(4), 261-271.
  23. Mir Alizadeh Fard, Khorram Nejadian, & Rashidi. (2021). Investigating the relationship between daily and monthly concentrations of urban air pollutants with the mixing depth in Poonak station by Using AERMOD model. Environmental Science Studies, 6(2), 3587-3595
  24. Oke, T. R. (2002). Boundary layer climates. Routledge. P 272
  25. Pan, L., Xu, J., Tie, X., Mao, X., Gao, W., & Chang, L. (2019). Long-term measurements of planetary boundary layer height and interactions with PM2. 5 in Shanghai, China. Atmospheric Pollution Research, 10(3), 989-996.
  26. Quan, J., Gao, Y., Zhang, Q., Tie, X., Cao, J., Han, S., ... & Zhao, D. (2013). Evolution of planetary boundary layer under different weather conditions, and its impact on aerosol concentrations. Particuology, 11(1), 34-40.
  27. Sarizadeh, Jafarzadeh, Nemat Elah, Moatar, Mohammadi Rozbahani, & Tahmasabi. (2021). Correlation measurement of changes in urban air pollution with the death rate of cardiovascular and respiratory patients "A case study of Ahvaz city between 2017 and 2018". Jundishapour Scientific Journal of Medicine, 19(6), 501-514.‎
  28. Song, J., & Wang, Z. H. (2016). Diurnal changes in urban boundary layer environment induced by urban greening. Environmental Research Letters, 11(11), 114018.
  29. Song, J., Wang, Z. H., & Wang, C. (2018). The regional impact of urban heat mitigation strategies on planetary boundary layer dynamics over a semiarid city. Journal of Geophysical Research: Atmospheres, 123(12), 6410-6422.
  30. Sun, Z., Han, L., Ding, A., Liu, H., & Zhao, X. (2022). The health impacts of aerosol-planetary boundary layer interactions on respiratory and circulatory mortality. Atmospheric Environment, 276, 119050.
  31. Tausi, Kefayat Molatl, & Omidreza. (1400). Analysis of the trend of the inversion conditions of the air boundary layer in the cities of mountainous regions and its relationship with the Enso phenomenon (case study: Shiraz). Quarterly Journal of Geographical Studies of Mountainous Regions, 1-17
  32. Wang, M., Tang, G., Liu, Y., Ma, M., Yu, M., Hu, B., ... & Wang, Y. (2021). The difference in the boundary layer height between urban and suburban areas in Beijing and its implications for air pollution. Atmospheric Environment, 260, 118552.
  33. Yarahamdi Dariush, Halimi Mansour, & Zarei Chaghabaki Zahra. (2015). Investigating the monthly changes of the boundary layer height in the conditions of critical inversions (case study: Mehrabad station, Tehran).
  34. Yarahamdi, Zarei-Chaghabaki, & Halimi. (2018). Revealing the impact of urban use on the annual temporal-spatial variability of the height of the studied boundary layer: Kermanshah city. Spatial analysis of environmental hazards, 19(5), 53-66

 

  1. Yu, M., Liu, Y., Dai, Y., & Yang, A. (2013). Impact of urbanization on boundary layer structure in Beijing. Climatic Change, 120(1), 123-136.
  2. Zhu, X., Ni, G., Cong, Z., Sun, T., & Li, D. (2016). Impacts of surface heterogeneity on dry planetary boundary layers in an urban‐rural setting. Journal of Geophysical Research: Atmospheres, 121(20), 12-164.
  3. Saha, S., Moorthi, S., Pan, H. L., Wu, X., Wang, J., Nadiga, S., ... & Goldberg, M. (2010). The NCEP climate forecast system reanalysis. Bulletin of the American Meteorological Society,91(8), 1015-1058.