Investigating the relationship between tropopause temperature and height with climatic changes of surface temperature and precipitation in Iran

Document Type : Original Article

Author

Assistant Professor of Climatology, Department of Geography, Faculty of Social Sciences, Payam Noor University, Tehran, Iran,

Abstract

The growing need to know the temporal and spatial structure of meteorological parameters in the tropopause transition zone caused the temporal changes of the temperature and height of this layer to be investigated during the last two decades (2002-2022) using the reanalyzed data of the Atmospheric Infrared Sounder (Aqua, MODIS, ARIS). Also, the relationship between the changes in tropopause characteristics and climate change of temperature and precipitation in Iran was studied using daily precipitation data of GPCP (2000-2022) and minimum, maximum and average daily temperature data of MERRA-2 model (1980-2022). In this regard, Pearson's correlation tests and regression analysis were used to investigate the relationship between research variables, and Kendall's seasonal time series and Mann-Kendall's ordinal tests were used to analyze regional mean daily and monthly trends. The results showed that the variables of tropopause temperature and height (TTH) have a negative correlation of 0.93 with each other (R2=0.85). On the other hand, the variable of the regional mean of daily tropopause height (TH) has a significant positive correlation with the variables of the daily earth's surface temperature (with correlation coefficients exceeding 0.8). Also, R2 values higher than 0.6 indicate a completely significant correlation of total monthly precipitation data with changes in monthly mean of TTH, which makes it possible to predict the rainfall anomaly in Iran by monitoring the tropopause characteristics. Time series analysis of the research variables using Kendall's seasonal and ordinal tests showed that the TH variable and the surface temperature variables are respectively with statistical values (τ). 0.18, 0.22, 0.27 and 0.32 have shown significant increasing trends in the last few decades. Finally, by introducing the TH as an indicator of climate change in Iran, the necessity of conducting more research in this field is emphasized.

Keywords

Main Subjects


  1. Azarderakhsh, M., Prakash, S., Zhao, Y., & AghaKouchak, A. (2020). Satellite-based analysis of extreme land surface temperatures and diurnal variability across the hottest place on Earth. IEEE Geoscience and Remote Sensing Letters, 17(12), 2025-2029.
  2. Bosilovich, M., & Cullather, R. (2017). The Climate Data Guide: NASA’s MERRA2 Reanalysis.
  3. Cavcar, M. (2000). The international standard atmosphere (ISA). Anadolu University, Turkey, 30(9), 1-6.
  4. Heo, B. H., Kim, K. E., Campistron, B., & Klaus, V. (2003, May). Estimation of the tropopause height using the vertical echo peak and aspect sensitivity characteristics of a VHF radar. In 10th International workshop on Technical and Scientific Aspects of MST Radar.
  5. Highwood, E. J., Hoskins, B. J., & Berrisford, P. (2000). Properties of the Arctic tropopause. Quarterly Journal of the Royal Meteorological Society, 126(565), 1515-1532.
  6. Hoffmann, L., & Spang, R. (2022). An assessment of tropopause characteristics of the ERA5 and ERA-Interim meteorological reanalyses. Atmospheric Chemistry and Physics, 22(6), 4019-4046.
  7. Hoinka, K. P. (1999). Temperature, humidity, and wind at the global tropopause. Monthly Weather Review, 127(10), 2248-2265.
  8. Holton, J. R., Haynes, P. H., McIntyre, M. E., Douglass, A. R., Rood, R. B., & Pfister, L. (1995). Stratosphere-troposphere exchange. Reviews of geophysics, 33(4), 403-439.
  9. Huffman, G. J., Adler, R. F., Behrangi, A., Bolvin, D. T., Nelkin, E. J., Gu, G., & Ehsani, M. R. (2023). The New Version 3.2 Global Precipitation Climatology Project (GPCP) Monthly and Daily Precipitation Products. Journal of Climate, 1-44.
  10. Johnston, B. R., Xie, F., & Liu, C. (2022). Relationships between Extratropical Precipitation Systems and UTLS Temperatures and Tropopause Height from GPM and GPS-RO. Atmosphere, 13(2), 196.
  11. Johnston, B. R., Xie, F., & Liu, C. (2022). Relationships between Extratropical Precipitation Systems and UTLS Temperatures and Tropopause Height from GPM and GPS-RO. Atmosphere, 13(2), 196.
  12. König, N., Braesicke, P., & von Clarmann, T. (2019). Tropopause altitude determination from temperature profile measurements of reduced vertical resolution. Atmospheric Measurement Techniques, 12(7), 4113-4129.
  13. Lettenmaier, D. P., Wood, E. F., & Wallis, J. R. (1994). Hydro-climatological trends in the continental United States, 1948-88. Journal of Climate, 7(4), 586-607.
  14. Liu, C. Y., Li, J., Weisz, E., Schmit, T. J., Ackerman, S. A., & Huang, H. L. (2008). Synergistic use of AIRS and MODIS radiance measurements for atmospheric profiling. Geophysical Research Letters, 35(21).
  15. Liu, Z., Sun, Y., Bai, W., Xia, J., Tan, G., Cheng, C., ... & Wang, D. (2021). Comparison of RO tropopause height based on different tropopause determination methods. Advances in Space Research, 67(2), 845-857.
  16. Mateus, P., Mendes, V. B., & Pires, C. A. (2022). Global Empirical Models for Tropopause Height Determination. Remote Sensing, 14(17), 4303.
  17. Meng, L., Liu, J., Tarasick, D. W., Randel, W. J., Steiner, A. K., Wilhelmsen, H., ... & Haimberger, L. (2021). Continuous rise of the tropopause in the Northern Hemisphere over 1980–2020. Science Advances, 7(45), eabi8065.
  18. Pittman, J. V., Pan, L. L., Wei, J. C., Irion, F. W., Liu, X., Maddy, E. S., ... & Gao, R. S. (2009). Evaluation of AIRS, IASI, and OMI ozone profile retrievals in the extratropical tropopause region using in situ aircraft measurements. Journal of Geophysical Research: Atmospheres, 114(D24).
  19. Randel, W. J., & Jensen, E. J. (2013). Physical processes in the tropical tropopause layer and their roles in a changing climate. Nature Geoscience, 6(3), 169-176.
  20. Randel, W. J., Park, M., Wu, F., & Livesey, N. (2007). A large annual cycle in ozone above the tropical tropopause linked to the Brewer–Dobson circulation. Journal of the Atmospheric Sciences, 64(12), 4479-4488.
  21. Reichler, T., Dameris, M., & Sausen, R. (2003). Determining the tropopause height from gridded data. Geophysical research letters, 30(20).
  22. Santer, B. D., Sausen, R., Wigley, T. M. L., Boyle, J. S., AchutaRao, K., Doutriaux, C., ... & Taylor, K. E. (2003a). Behavior of tropopause height and atmospheric temperature in models, reanalyses, and observations: Decadal changes. Journal of Geophysical Research: Atmospheres, 108(D1), ACL-1.
  23. Santer, B. D., Wehner, M. F., Wigley, T. M. L., Sausen, R., Meehl, G. A., Taylor, K. E., ... & Bruggemann, W. (2003b). Contributions of anthropogenic and natural forcing to recent tropopause height changes. science, 301(5632), 479-483.
  24. Santer, B. D., Wigley, T. M., Simmons, A. J., Kållberg, P. W., Kelly, G. A., Uppala, S. M., ... & Wentz, F. J. (2004). Identification of anthropogenic climate change using a second‐generation reanalysis. Journal of Geophysical Research: Atmospheres, 109(D21).
  25. Sausen, R., & Santer, B. D. (2003). Use of changes in tropopause height to detect human influences on climate. Meteorologische Zeitschrift, 131-136.
  26. Scaife, A. A., Spangehl, T., Fereday, D. R., Cubasch, U., Langematz, U., Akiyoshi, H., ... & Shepherd, T. G. (2012). Climate change projections and stratosphere–troposphere interaction. Climate Dynamics, 38, 2089-2097.
  27. Schneider, T. (2004). The tropopause and the thermal stratification in the extratropics of a dry atmosphere. Journal of the atmospheric sciences, 61(12), 1317-1340.

 

  1. Sedaghat, M., & Nazaripour, H. (2022). Analysis of observed and projected interannual variability in the summer season onset, length, and end dates across the Iran. Theoretical and Applied Climatology, 147, 549-558.
  2. Seidel, D. J., Ross, R. J., Angell, J. K., & Reid, G. C. (2001). Climatological characteristics of the tropical tropopause as revealed by radiosondes. Journal of Geophysical Research: Atmospheres, 106(D8), 7857-7878.
  3. Serrano, A., Mateos, V.L. and Garcia, J.A., (1999). Trend Analysis of Monthly Precipitation over the Iberian Peninsula for the Period 1921-1995. phys. Chem. EARTH(B), VOL.24, NO. 1-2:85-90.
  4. Shaw, T. A., & Shepherd, T. G. (2008). Raising the roof. Nature geoscience, 1(1), 12-13.
  5. Sneyers, R. (1990) On the Statistical Analysis of Series of Observations. Technical Note no. 143, WMO-no. 415, World Meteorological Organization, Geneva, Switzerland.
  6. Thuburn, J., & Craig, G. C. (2000). Stratospheric influence on tropopause height: The radiative constraint. Journal of the atmospheric sciences, 57(1), 17-28.
  7. WMO, G., & OMM, G. (1992). International meteorological vocabulary (2nd Ed). Geneva.
  8. Zhran, M., & Mousa, A. (2023). Global tropopause height determination using GNSS radio occultation. The Egyptian Journal of Remote Sensing and Space Science, 26(2), 317-331.