Perspective of the effect of global warming on the change of temporal-spatial pattern of heat stress occurrence in Iran

Document Type : Original Article

Authors

1 Ms in climatology, Golestan Meteorological Department, Gorgan, Iran

2 School of Geography, Archaeology and Environmental Studies, University of the Witwatersrand, Private Bag 3, Wits 2050, Johannesburg, South Africa

Abstract

Thermal stress poses significant direct and indirect risks to human health. Under climate change, both mean temperature and the frequency and intensity of extreme thermal stress events are projected to increase. Located within an arid to semi-arid region, Iran is anticipated to experience particularly intense temperature and humidity changes under climate change, potentially heightening the public health challenges associated with thermal stress. To facilitate improved adaptation to these thermal threats, accurate high spatial resolution thermal heat stress risk maps are important. This study combines various climate indices to produce such a thermal stress risk map for the reference period 1980-2010, with RCP4.5 projections for the period 2020-2049. Although the results of the various indices are statistically significantly correlated, each index returned a remarkably different spatial distribution and risk classification. Therefore, a fuzzy approach was followed through a geographical information system (GIS) to combine the results of the five bioclimatic indices and prepare a final thermal stress risk map. Based on the RCP4.5 scenario, the results indicate a notable 24.5% reduction in the areas susceptible to thermal stress at the high-risk and very high-risk levels, compared to the reference period. The lowest projected risk is for the central parts of Iran, while the southern and northern coasts of Iran were the zones of the highest risk, for which adaptation responses are most necessary.

Keywords


  1. دوستان، رضا. 1394. تحلیل فضایی- زمانی امواج گرمایی خراسان رضوی. جغرافیایی سرزمین، شماره ۴۷: ۳۲-۱۷.
  2. ذوالفقاری، حسن. 1389. آب و هواشناسی توریسم، انتشارات سمت.
  3. علیجانی، بهلول. ثروتی، محمدرضا. ویلنی، عمران علی زاده.۱۳۹۲. طبقه بندی موج گرما در استان گیلان. جغرافیای طبیعی، شماره ۱۹: ۱۶-۱.
  4. کرم پور، مصطفی. رفیعی، جعفر. جعفری، ایوب.1396. شناسایی و تحلیل سینوپتیکی امواج گرمایی غرب ایران (ایلام، خوزستان، لرستان، کرمانشاه)، مدیریت مخاطرات محیطی، شماره 3: ۲۷۹-۲۶۳.
  5. مجرد، فیروز. معصوم پور، جعفر. رستمی، طیبه. ۱۳۹۴. تحلیل آماری- همدیدی امواج گرماییی بالای ۴۰ درجه سلسیوس در غرب ایران. جغرافیا و مخاطرات محیطی، شماره ۱۳: ۵۸-۴۱.
    1. Abbasnia, M., Tavousi, T. and Khosravi, M. 2016. Assessment of future changes in the maximum temperature at selected stations in Iran based on HADCM3 and CGCM3 models. Asia-Pacific Journal of Atmospheric Sciences 52: 371-377.
    2. Feizizadeh, B., Roodposhti, M.S., Jankowski P. and Blaschke, T. 2014. A GIS-based extended fuzzy multi-criteria evaluation for landslide susceptibility mapping. Computers & Geosciences, 73: 208-221.
    3. Ilanloo, M. 2011. A comparative study of fuzzy logic approach for landslide susceptibility mapping using GIS: An experience of Karaj dam basin in Iran. Procedia Social and Behavioral Sciences, 19: 668-676.
    4. Kourgialas, N.N., George P. and Karatzas, G.P. 2011. Flood management and a GIS modelling method to assess flood-hazard areas—a case study. Hydrological Sciences Journal, 56(2): 212-225.
    5. Karandish, F. and Mousavi, S.S. 2018. Climate change uncertainty and risk assessment in Iran during twenty-first century: evapotranspiration and green water deficit analysis, Theor Appl Climatol 131: 777.
    6. Nikolova, V. and Zlateva, P. 2018, Geoinformation approach for complex analysis of multiple natural Hazard, The international archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Volume XLII-3/W4, 2018 GeoInformation For Disaster Management (Gi4DM), 18–21 March 2018, Istanbul, Turkey
    7. Nikolova V. and Zlateva P. 2019. Complex Geoinformation Analysis of Multiple Natural Hazards Using Fuzzy Logic. In: Altan O., Chandra M., Sunar F., Tanzi T. (eds) Intelligent Systems for Crisis Management. Gi4DM 2018. Lecture Notes in Geoinformation and Cartography. Springer, Cham.
    8. Roshan, GH., Ghanghermeh, A. and Grab, S.W. 2018. Testing a new application for TOPSIS: monitoring drought and wet periods in Iran Theor Appl Climatol, 131: 557.
    9. Roshan, Gh., Saleh Almomenin, H., Hirashima, S. and Attia, S. 2019. Estimate of outdoor thermal comfort zones for different climatic regions of Iran, Urban Climate 27 (2019) 8–23
    10.  Roshan, GH. and Nastos, P.T. 2018. Assessment of extreme heat stress probabilities in Iran’s urban settlements, using first order Markov chain model Sustainable Cities and Society, 36: 302-310.

16. Roshan, G.R., Yousefi, R., Kovács, A. and Matzarakis, A. 2018. A comprehensive analysis of physiologically equivalent temperature changes of Iranian selected stations for the last half century. Theoretical and Applied Climatology, 131: 19-41.

  1. Roshan, G.H., Yousefi, R. and Fitchett, J. 2016. Long-term trends in tourism climate index scores for 40 stations across Iran: the role of climate change and influence on tourism sustainability. International Journal of Biometeorology, 60: 33-52.
  2. Rahimi, J., Ebrahimpour, M. and Khalili, A. 2013. Spatial changes of Extended De Martonne climatic zones affected by climate change in Iran, Theor Appl Climatol 112: 409.

19. Shannon, C.E. 1948. "A Mathematical Theory of Communication", Bell System Technical Journal, 27(3): 379-423.

  1. Steadman, R.G. 1984. A universal expression of apparent temperature. J. Appl. Meteor. 23: 1674-87.
  2. Steadman R.G. 1979. The assessment of sultriness. Part I: a temperaturehumidity index based on human physiology and clothing science. J Appl Meteorol 18: 861–873.

22. Steadman, R.G. 1994. Norms of apparent temperature in Australia. Aust. Met. Mag, 43: 1-16.

23. Watts.  D. and KalKstein, S. 2004. The develop Ment of a warm–Weather relative stress   index   for   invironmental application, Journal of applied meteorology, 43: 503-513.