اصلاح خطای دما و بارش در شبیه‌سازی مدل‌های آب و هوایی

نوع مقاله : مقاله پژوهشی

نویسنده

دانش آموخته دکتری اقلیم شناسی، کارشناس سازمان هواشناسی کشور

چکیده

اصلاح خطا معمولاً برای خروجی‌های مدل اقلیمی قبل از استفاده بعنوان ورودی مدل‌های محیطی در مطالعات اثر تغییر اقلیم استفاده می‌شود. در این پژوهش ابتدا خروجی‌ شش GCM ریزمقیاس نمایی شده با RcgCM4-4 در محدوده CORDEX جنوب آسیا با قدرت تفکیک افقی حدود 50 کیلومتر از سایت ESGF دریافت گردید. همچنین داده‌های بارش، دمای بیشینه و دمای کمینه 41 ایستگاه همدید با نزدیکترین فاصله با یاخته‌های مدل‌ها در محدود ایران از سازمان هواشناسی کشور اخذ شد. سپس دقت خروجی‌های یاخته‌های متناظر با ایستگاه‌های زمینی نسبت به داده‌های مشاهداتی با روش‌های همبستگی و انحراف ‌معیار استاندار شده با استفاده از نمودار تیلور ارزیابی گردید. در ادامه خطای مدل با کمترین خطای آماری برای خروجی‌های بارش با روش fitQmapRQUANT و برای خروجی‌های دمای بیشینه و دمای کمینه با روش اصلاح خطای اسکن خطی تصحیح خطا شدند. نتایج نشان داد روش‌های اصلاح خطای بکار رفته برای خروجی‌های دما سبب کاهش خطای داده‌ها شده است. برای دمای بیشینه در اکثر ایستگاه‌های مطالعاتی کم برآوردی این متغیر مشاهده گردید. این کم برآوردی در فصول گرم سال بیشتر از فصول سرد سال است. خروجی‌های ماهانه دمای کمینه مدل CCCma در مقایسه با داده‌های ایستگاه‌های واقع در مناطق جنوبی ایران بیش برآوردی این متغیر را بویژه در فصول گرم سال از خود نشان دادند. این در حالی است که در اکثر ایستگاه‌های واقع در عرض‌های جغرافیایی بالا برآوردی درست یا کم برآوردی این متغیر مشاهده شد. در حالی که برای خروجی‌های بارش به سبب اختلاف زیاد بین داده‌های مشاهداتی و مدل روش اصلاح خطا اثر بخش نبود. برای این متغیر مدل در شبیه‌سازی آن متأثر از بارش‌های موسمی جنوب آسیا برآورد درستی از بارش‌های جنوب ایران نداشته و شرایط بارش تابستانه را در این مناطق و حتی مناطق واقع در عرض‌های بالاتر در خروجی‌های هر شش مدل مورد بررسی از خود نشان داد.

کلیدواژه‌ها


عنوان مقاله [English]

Temperature and Precipitation Bias Correction in the Climate Model Simulations

نویسنده [English]

  • Asghar Kamyar
PhD of Climatology, Iran Meteorology Organisation
چکیده [English]

Bias correction usually used for the outputs of the climatic model before use as an input of environmental models in the climate change effects studies. In this research, GCM outputs obtained from ESGF dataset with the RcgCM4-4 climate model in the South Asia CORDEX domain with horizontal resolution about 50 km. Precipitation, maximum and minimum temperature data of 41 synoptic stations with the closest distance to model cells in Iran domain obtained from Iran Meteorological Organization. Then the accuracy of the outputs of the cells corresponding compared to the observational data with correlation and normalized standard deviation methods evaluated by Taylor diagram. Then, the model bias with the least error corrected for the precipitation outputs with fitQmapRQUANT method and for the maximum and minimum temperature outputs with the linear scanning bias correction. Results showed that the bias correction methods used for the temperature outputs improved the error of data but for precipitation outputs, it was not effective due to the large difference between observation and model data. The model to estimating the maximum temperature in these regions had less bias than in those at low latitudes. The CCCma model's monthly minimum temperature outputs overestimated this variable, especially in hot seasons, compared to station data in southern Iran. At most stations located at high latitudes, this variable is corrected or underestimated. The bias correction of the model outputs for this variable corrected the biases in the cells corresponding to the observation stations.

کلیدواژه‌ها [English]

  • RegCM4-4
  • bias correction
  • CORDEX
  • climate change
  1. Ahmed, K.F., Wang, G., Silander, J., Wilson, A.M., Allen, J.M., Horton, R., and Anyah, R. 2013. “Statistical downscaling and bias correction of climate model outputs for climate change impact assessment in the U.S. Northeast”. Global and Planetary Change, 100, 320-332.
  2. Beck, H.E., Wood, E.F., McVicar, T.R., Zambrano-Bigiarini, M., Alvarez-Garreton, C., Baez-Villanueva, O.M., and Karger, D.N. 2020. Bias Correction of Global High-Resolution Precipitation Climatologies Using Streamflow Observations from 9372 Catchments. Journal of Climate, 33(4), 1299-1315. doi: 10.1175/jcli-d-19-0332.1
  3. Berg, P., Feldmann, H., and Panitz, H.J. 2012. “Bias correction of high-resolution regional climate model data”. Journal of Hydrology, 448-449, 80-92.
  4. Cannon, A.J., Piani, C., and Sippel, S. 2020. Chapter 5 - Bias correction of climate model output for impact models. In J. Sillmann, S. Sippel & S. Russo (Eds.), Climate Extremes and Their Implications for Impact and Risk Assessment (pp. 77-104): Elsevier.
  5. Chen, J. et al. 2019. "Bias correcting climate model multi-member ensembles to assess climate change impacts on hydrology." Climatic Change, 153(3): 361-377.
  6. Chen, J., and Brissette, F.P. 2019. “Reliability of climate model multi-member ensembles in estimating internal precipitation and temperature variability at the multi-decadal scale”. International Journal of Climatology, 39(2), 843-856. doi: 10.1002/joc.5846
  7. Dosio, A., and Paruolo, P. 2011. “Bias correction of the ENSEMBLES high-resolution climate change projections for use by impact models: Evaluation on the present climate”. Journal of Geophysical Research: Atmospheres, 116(D16). doi: 10.1029/2011jd015934
  8. Ghimire, U., Srinivasan, G., and Agarwal, A. 2019. Assessment of rainfall bias correction techniques for improved hydrological simulation. International Journal of Climatology, 39(4), 2386-2399. doi: 10.1002/joc.5959
  9. Guo, Q., Chen, J., Zhang, X., Shen, M., Chen, H., and Guo, S. 2019. “A new two-stage multivariate quantile mapping method for bias correcting climate model outputs”. Climate Dynamics. doi: 10.1007/s00382-019-04729-w
  10. Ivanov, M.A., and Kotlarski, S. 2017. Assessing distribution-based climate model bias correction methods over an alpine domain: added value and limitations. International Journal of Climatology, 37(5), 2633-2653. doi:10.1002/joc.4870
  11. Kanamaru Hideki and Masao Kanamitsu. 2007. “Scale-Selective Bias Correction in a Downscaling of Global Analysis Using a Regional Model”. Monthly weather review. Vol. 135.
  12. Krinner, G., Beaumet, J., Favier, V., Déqué, M., & Brutel-Vuilmet, C. 2019. Empirical Run-Time Bias Correction for Antarctic Regional Climate Projections With a Stretched-Grid AGCM. Journal of Advances in Modeling Earth Systems, 11(1), 64-82. doi: 10.1029/2018ms001438
  13. Maraun, D., Shepherd, T. G., Widmann, M., Zappa, G., Walton, D., Gutiérrez, J. M., and Mearns, L.O. 2017. “Towards process-informed bias correction of climate change simulations”. Nature Climate Change, 7, 764. doi: 10.1038/ nclimate 3418.
  14. Maraun, D. 2012. “Nonstationarities of regional climate model biases in European seasonal mean temperature and precipitation sums”. Geophysical Research Letters, 39(6). doi: 10.1029/2012gl051210
  15. Maurer, E.P., Das, T., and Cayan, D.R. 2013. “Errors in climate model daily precipitation and temperature output: time invariance and implications for bias correction”. Hydrol. Earth Syst. Sci.,17(6), 2147-2159. doi: 10.5194/hess-17-2147-2013.
  16. Müller, M.F., and Thompson, S.E. 2013. “Bias adjustment of satellite rainfall data through stochastic modeling: Methods development and application to Nepal”. Advances in Water Resources, 60, 121-134. doi: https://doi.org/10.1016 /j.advwatres.2013.08.004
  17. Piani, C., and Haerter, J.O. 2012. “Two-dimensional bias correction of temperature and precipitation copulas in climate models”. Geophysical Research Letters, 39(20). doi: 10.1029 /2012gl053839
  18. Terink, W., Hurkmans, R.T.W.L., Torfs, P.J.J.F., and Uijlenhoet, R. 2010. “Evaluation of a bias correction method applied to downscaled precipitation and temperature reanalysis data for the Rhine basin”. Hydrol. Earth Syst. Sci., 14(4), 687-703. doi: 10.5194/hess-14-687-2010
  19. Xu, Zhongfeng and Zong-Liang Yang. 2012. “An Improved Dynamical Downscaling Method with GCM Bias Corrections and Its Validation with 30 Years of Climate Simulations”. Journal of Climate Vol. 25.
  20. Yuan, Q., Thorarinsdottir, T.L., Beldring, S., Wong, W. K., Huang, S., and Xu, C.-Y. 2019. New Approach for Bias Correction and Stochastic Downscaling of Future Projections for Daily Mean Temperatures to a High-Resolution Grid. Journal of Applied Meteorology and Climatology, 58(12), 2617-2632. doi: 10.1175/jamc-d-19-0086.1
  21. Zhang, H., Fraedrich, K., Blender, R., and Zhu, X. 2013. “Precipitation Extremes in CMIP5 Simulations on Different Time Scales”. Journal of Hydrometeorology, 14(3), 923-928. doi: 10.1175/jhm-d-12-0181.1