تحلیل مکانی روند بارش‌های سنگین فصلی و سالانه کشور با استفاده از رگرسیون چندک

نوع مقاله : مقاله پژوهشی

نویسندگان

1 استادیار، گروه اقلیم‌شناسی کاربردی، پژوهشکده اقلیم شناسی، پژوهشگاه هواشناسی و علوم جو، مشهد، ایران،

2 کارشناس‌ارشد پژوهشی، گروه اقلیم‌شناسی کاربردی، پژوهشکده اقلیم‌شناسی، پژوهشگاه هواشناسی و علوم جو، مشهد، ایران

چکیده

دلیل اصلی وجود عدم قطعیت در تعیین کمبود منابع آبی در آینده، تغییر اقلیم است. به‌دلیل گرم شدن کره زمین نگرانی­هایی در مورد افزایش یا کاهش بارندگی وجود دارد و این مسأله برنامه­ریزی و مدیریت منابع آب را پیچیده می­کند. از این رو بررسی روند بارش از اهمیت بسزایی برخوردار است. روند خطی گزارش شده در ارزیابی­های اقلیمی ایران و جهان، منعکس‌کننده تغییر در میانگین بارش سالانه است. روند میانگین، نمی­تواند تغییرات سایر چندک­های توزیع، از جمله دم­های توزیع (میزان بارش بسیار زیاد و کم) را منعکس کند. در این مطالعه از روش رگرسیون چندک[1] (QR) برای تعیین روند بارش­های سنگین (بارش­های بیشتر از صدک 98ام توزیع بارش) فصلی و سالانه ۴4 ایستگاه سینوپتیک­ کشور برای دو دوره­ی نرمال استاندارد اقلیمی اخیر 2010-1981 و2020 -1991 استفاده شد. برای این منظور، بعد از کنترل کیفیت و همگن­سازی داده­ها، صدک­های 98ام بارش­های فصلی و سالانه برای هر دو دوره محاسبه شدند و مورد مقایسه قرار گرفتند. سپس روند این چندک­ها با استفاده از روش رگرسیون چندک برآورد شده و مورد آزمون قرار گرفتند. نتایج نشان داد که در مقایسه دو دوره نرمال استاندارد اقلیمی، بارش­­های سنگین بهاری در دامنه­های جنوبی البرز، بارش­های سنگین تابستانی در سواحل دریای خزر، بارش­های سنگین پاییزی در شمال غرب و شمال شرق کشور و بارش­های سنگین زمستانی در دامنه­های زاگرس به طور عمده تغییر رفتار داده­اند. همینطور، بارش­های سنگین بهاری در دامنه­های جنوبی البرز رو به کاهش است، در صورتی­که بارش­های سنگین تابستانی در سواحل دریای خزر و بارش­های سنگین پاییزی در شمال غرب و شمال شرق کشور رو به افزایش است.
 

 
 

کلیدواژه‌ها

موضوعات


عنوان مقاله [English]

Spatial analysis of seasonal and annual heavy precipitation trends in Iran using quantile regression

نویسندگان [English]

  • Zohreh Javanshiri 1
  • Fatemeh Abasi 2
1 Climate Research Center, Research Institute of Meteorology and Atmospheric Science (RIMAS), Mashhad, Iran,
2 Climate Research Center, Research Institute of Meteorology and Atmospheric Science (RIMAS), Mashhad, Iran.
چکیده [English]

The most significant factor that results in uncertainty about future water resource scarcity is climate change. Due to global warming, concerns about increasing or decreasing precipitation exist, which complicates water resource planning and management. Therefore, studying the trend of precipitation is of great importance. The linear trend reported in climate assessments reflects changes in average annual precipitation. However, the average trend cannot capture variations in other distribution aspects, including extreme precipitation events (high or low precipitation amounts). In this study, the Quantile Regression (QR) method was used to determine the trend of heavy precipitation (rainfall exceeding the 98th percentile) for seasonal and annual periods at 44 synoptic stations in Iran for two recent climatological standard normal periods: 1981-2010 and 1991-2020. For this purpose, after data quality control and homogenization, the 98th percentiles of seasonal and annual precipitation were calculated for both periods and compared. Then, the trends of these percentiles were estimated using the Quantile Regression method and tested. The results showed that compared to the two climatological standard normal periods, spring heavy precipitation had changed significantly in the southern of Alborz Mountain, summer heavy precipitation on the shores of the Caspian Sea, autumn heavy precipitation in the northwest and northeast regions of Iran, and winter heavy rainfall in the Zagros range. Similarly, spring-heavy precipitation in the southern of Alborz Mountain is decreasing, while summer-heavy precipitation on the shores of the Caspian Sea and autumn-heavy precipitation in the northwest and northeast regions of Iran are increasing.

کلیدواژه‌ها [English]

  • Climate change
  • Precipitation
  • quantile regression
  • trend analysis
  • Iran
  1. اکبری، م.؛ نودهی، و. ۱۳۹۴. بررسی و تحلیل روند بارش سالانه و تابستانه استان گلستان. مجله آزمایش جغرافیایی فضا، دوره پنجم، شماره ۱۷، ۱۴۱-۱۵۰.
  2. برارخان پور ، ص.؛ قربانی، خ.؛ سالاری جزی، م.؛ رضایی قلعه، ل. ۱۳۹۸. مطالعه روند تغییرات فصلی و سالانه بارش با روش رگرسیون چندک (مطالعه موردی: ایستگاه هاشم آباد گرگان). پژوهش­های اقلیم­شناسی، سال دهم، شماره ۳۹، ۸۹-۱۰۴.
  3. جوانشیری، ز و فلامرزی، ی. پاکدامن، م و بابائیان، ا . 1398. بررسی روند بارش مرتبط با شرایط سیل و خشکسالی به روش رگرسیون چندکی (مطالعه موردی: مشهد، دوره 1899-2018)، ششمین کنفرانس منطقه ای تغییر اقلیم، تهران.
  4. داداشی رودباری، ع.؛ کیخسروی کیانی، م. ۱۳۹۵. واکاوی مکانی و زمانی روند بارش سالانه ایران طی سال‌های 1329 تا 1386. محیط زیست و مهندسی آب، دوره دوم، شماره ۲، ۱۱۱-۱۲۱.
  5. زارع، م. 1398. سیل­های فرودین و اردیبهشت 1398 و تغییرات اقلیمی در ایران، نگاه ویژه به سیلاب د راستان خوزستان. فرهنگستان علوم.
  6. سلیمانی، ک. 1400. تحلیل روند تغییرات برخی پارامترهای سینوپتیک با استفاده از روش رگرسیون چندک در بابلسر. مهندسی آبیاری و آب ایران 3: 236- 252.
  7. AbbasA., and Xuan, Y. 2019. Quantile Regression Based Methods for Investigating Rainfall Trends Associated with Flooding and Drought Conditions. Water Resources Management, 33, 4249 - 4264.
  8. Amran, B. and Anisa, B. 2017.Trend Analysis of Precipitation Extreme Related to Climate Change in Province Sulawesi Selatan, Indonesia. International Journal of Applied Engineering Research, 12) 21(: 11035-11038.
  9. Chamaille-Jammes, S., Fritz, H., Murinadagomo, F. 2007. Detecting climate changes of concern in highly variable environments: quantile regressions reveal that droughts worsen in Hwange national park, Zimbabwe. J. Arid Environ. 71 (3): 321e326.
  10. Fan, L., and Chen, D. 2016. Trends in extreme precipitation indices across China detected using quantile regression. Atmospheric Science Letters, 17, 400-406.
  11. Friederichs, P. 2010. Statistical downscaling of extreme precipitation events using extreme value theory. Extremes, 13, 109–132. (DOI 10.1007/s10687-010-0107-5).
  12. Gandomkar, A., and A. Abdolahi, 2012. The Study of Precipitation Trend in North Alborz Basin (Iran). Journal WULFENIA, 19, 2-8.
  13. Gao, M. and Franzke, C. 2017. Quantile Regression-based Spatio - temporal Analysis of Extreme Temperature Change in China. Journal of Climate, 30, 9897-9914
  14. Hidalgo, G.J.C., M. De Luı ́s, J. Ravento and J.R. Sa ́nchez. 2003. Dailyrainfall trend in the Valenciaregion ofSpain. Theoretical and Applied Climatology, 75, 117-130.
  15. IPCC, 2021, AR6 Climate Change 2021, The Physical science basis, at: https://www.ipcc.ch /report/sixth-assessment-report-working-group-i.
  16. Javanshiri, Z., Babaeain, I., Pakdaman, M., 2022, Influence of large-scale climate signals on the precipitation variability over Iran. Stochastic Environmental Research and Risk Assessment, https://doi.org/10.1007 /s00477-022-02363-3.
  17. Javanshiri, Z., Pakdaman, M., and Falamarzi. Y., 2021. Homogenization and trend detection of temperature in Iran for the period 1960–2018. Meteorology and Atmospheric Physics, 1-18.
  18. Kendall, M. G., 1975. Rank Auto-correlation Methods, Charles Griffin, London.
  19. Koenker, R. 2005. Quantile Regression, first ed, New York, Cambridge University Press, 1-25.
  20. Koenker, R., Portnoy, S., Ng, P. T., Zeileis, A., Grosjean, P., Ripley, B.D. 2016. Package ‘quantreg’.
  21. Koenker, R., Bassett, G. 1978. Regression Quantiles. Econometrica, 46(1), 33. DOI: 10.2307/1913643.
  22. Kumar, N., Panchal, C.C., Chandrawanshi, S.K., and Thanki, J.D. 2017. Analysis of rainfall by using Mann-Kendall trend, Sen’s slope and variability at five districts of south Gujarat, India. MAUSAM, 68, 205-222.
  23. Mann, H.B. 1945. Nonparametric Tests Against Tren, Econometric, Journal of the Econometric Society, 245-259.
  24. Mazvimavi, D. 2010. Investigating changes over time of annual rainfall in Zimbabwe. Hydrol. Earth Syst. Sci. 14 (12), 2671-2679.
  25. Mohsenipour, M., S. Shahid, Ziarh, G.F. and Yaseen, Z.M. 2020. Changes in monsoon rainfall distribution of Bangladesh using quantile regression model, Theoretical and Applied Climatology, 142(3), 1329-1342.
  26. Pandit, D.V. 2016. Seasonal Rainfall Trend Analysis. Journal of Engineering Research and Application, 6(7), 69-73.
  27. .Roth, M., Buishand, T.A., and Jongbloed, G. 2015. Trends in Moderate Rainfall Extremes: A Regional Monotone Regression Approach. Journal of Climate, 28, 8760-8769.
  28. Shi, X., Xu, X., 2008, Interdecadal trend turning of global terrestrial temperature and precipitation during 1951–2002. Prog Nat Sci 18(11), 1383–1393, https://doi.org/10.1016/j.pnsc.2008.06.002.
  29. Reich, B.J. 2012. Spatiotemporal quintile regression for detecting distributional changes in environmental processes. Journal of the Royal Statistical Society: Series C (Applied Statistics), 61(4), 535-553.
  30. Shiau J-T, Huang W-H, 2015. Detecting distributional changes of annual rainfall indices in Taiwan using quintile regression. J Hydro Environ Res 9, 368–380
  31. So, B., and Kwon, H. H. 2012. Trend Analysis of Extreme Precipitation Using Quantile Regression. Journal of Korea Water Resources Association, 8: 815-826.
  32. Timofeev, A. A., and Sterin, A.M. 2010. Using the quantile regression method to analyze changes in climate characteristics. Russ. Meteorol. Hydrol, 35 (5), 27-41.
  33. Villarini, G., Slater, L.J. 2017. Examination of Changes in Annual Maximum Gauge Height in the Continental United States Using Quantile Regression. Journal of Hydrologic Engineering, 23(3), 11.
  34. Villarini, G., Smith, J.A., Baeck, M. L., Vitolo, R., Stephenson, D.B., Krajewski, W.F. 2011. On the frequency of heavy rainfall for the Midwest of the United States. J. Hydrol. 400, 103-120.
  35. Wang, H., Killick, R., and Fu, X. 2013, Distributional change of monthly precipitation due to climate change: comprehensive examination of dataset in southeastern United States. Hydrol. Process.http://dx.doi.org/10.1002/ hyp.9999.
  36. Xuan, Y., Abbas, S. A., Song, X., and D.E. Reeve, 2017. Quantile Regression Based Methods for Investigating Rainfall Trends Associated with Flooding and Drought Conditions, Journal of European Water, 59, 137-143.