ارزیابی خروجی ادغام شده مدل‌های اقلیمی CMIP6 برای تخمین شدت - فراوانی بارش‌های 24 ساعته در ایران

نوع مقاله : مقاله پژوهشی

نویسندگان

1 گروه اکولوژی، پژوهشکده علوم محیطی، پژوهشگاه علوم و تکنولوژی پیشرفته و علوم محیطی، دانشگاه تحصیلات تکمیلی صنعتی و فناوری پیشرفته، کرمان، ایران

2 پژوهشگر، انستیتوی مطالعات پیشرفته (IUSS)، پاویا، ایتالیا

3 موسسه ژئوفیزیک، دانشگاه تهران، تهران، ایران

چکیده

منحنی‌های شدت-مدت-فراوانی (IDF) از جمله ابزارهای مهم در طراحی سازه‌های آبی و هیدرولیکی هستند. این منحنی‌ها براساس داده‌های بارش ایستگاه‌های باران‌سنجی تخمین زده می‌شوند. اما تغییر اقلیم می‌تواند بر شدت و فراوانی وقوع پدیده‌های حدی مانند بارش‌های شدید تاثیرگذار باشد. بنابراین، منحنی‌های IDF موجود ممکن است برای طراحی سازه‌ها قابل اعتماد نباشند و باید مجدداً بر اساس داده‌های جدیدتر تخمین زده شوند. بر اساس خروجی مدل‌های اقلیمی می‌توان اثر تغییر اقلیم بر منحنی‌های IDF را بررسی نمود. برای این کار معمولاً پس از استخراج منحنی‌های IDF از هر مدل اقلیمی، منحنی نهایی مورد استفاده بر اساس میانه (median) داده‌ها استخراج می‌شود. در این مطالعه، 5 مدل اقلیمی از مدل‌های اقلیمی آخرین گزارش کمیته بین الدول تغییر اقلیم (CMIP6) انتخاب شده و دقت آنها در تخمین منحنی‌های شدت-فراوانی بارش 24 ساعته در 12 ایستگاه در ایران ارزیابی شد. همچنین، علاوه بر ارزیابی هر مدل، خروجی ادغام شده (pooled) مدل‌ها نیز مورد ارزیابی قرار گرفت و نتایج آن با منحنی حاصل از میانه داده‌ها مقایسه شد. معیارهای خطاسنجی شامل خطای میانگین (ME)، جذر میانگین مربعات خطا (RMSE) و خطای نسبی (RE) نشان داد که از بین مدل‌های مورد بررسی، مدل CMCC-CM2-SR5 در اغلب ایستگاه‌ها بهتر از سایر مدل‌ها شدت بارش 24 ساعته را تخمین می‌زند که این مسئله می‌تواند به‌دلیل توان تفکیک بهتر این مدل باشد. همچنین ادغام مدل‌ها و تخمین منحنی IDF با داده‌های ادغام شده نتایج بهتری از روش میانه و همچنین از اغلب مدل‌ها به‌ویژه در دوره‌های بازگشت طولانی‌تر به همراه داشت.

کلیدواژه‌ها

موضوعات


عنوان مقاله [English]

Assessment of Pooled CMIP6 Climate Models for estimation of Intensity-Frequency of 24-hour precipitation in Iran

نویسندگان [English]

  • Ameneh Mianabadi 1
  • Mohammad Mehdi Bateni 2
  • Morteza Babaei 3
1 Department of Ecology, Institute of Science and High Technology and Environmental Sciences, Graduate University of Advanced Technology, Kerman, Iran
2 University School for Advanced Studies Pavia, Piazza della Vittoria 15, 27100 Pavia, Italy
3 Institute of Geophysics, University of Tehran, Tehran, Iran
چکیده [English]

Intensity-Duration-Frequency (IDF) curves are crucial in the design of water and hydraulic infrastructures. These curves are estimated based on rainfall data collected by rain gauge stations. However, due to global climate change, the intensity and frequency of extreme events can be altered. Hence, the existing IDF curves may not be reliable for the design of infrastructures and should be revised based on more recent data. Climate models can be used to investigate the impact of climate change on IDF curves. Typically, after developing the IDF curves from each climate model, the final curve used is extracted based on the median of the data. This study explores the use of five CMIP6 climate models to estimate the intensity-frequency curves of 24-hour rainfall at 12 stations in Iran. In addition to evaluating each model individually, this study also assesses the combined output of the models and compares its results with the curve obtained from the median of the data. Evaluation metrics such as mean error (ME), root mean square error (RMSE) and relative error (RE) indicated that among the studied models, the CMCC-CM2-SR5 model provides a better estimate of the 24-hour rainfall intensity at most stations, likely due to its finer resolution. Furthermore, pooling the models and estimating the IDF curve with the pooled data yielded better results than the median method and most of the individual models, particularly for longer return periods. This suggests that using pooled data from multiple models could improve the accuracy of IDF curve estimates

کلیدواژه‌ها [English]

  • IDF curves
  • CMIP6
  • Pooling
  • Median
  1. Abduljaleel, Y., & Demissie, Y. (2021). Evaluation and optimization of low impact development designs for sustainable stormwater management in a changing climate. Water (Switzerland), 13(20), 1–21. https://doi.org /10.3390/w13202889
  2. Almagro, A., Oliveira, P. T. S., Rosolem, R., Hagemann, S., & Nobre, C. A. (2020). Performance evaluation of Eta/HadGEM2-ES and Eta/MIROC5 precipitation simulations over Brazil. Atmospheric Research, 244, 105053. https://doi.org/10.1016/j.atmosres.2020.105053
  3. Asadieh, B., & Krakauer, N. Y. (2015). Global trends in extreme precipitation: climate models versus observations. Hydrology and Earth System Sciences, 19(2), 877–891. https://doi.org/10.5194 /hess-19-877-2015
  4. Ayugi, B., Zhihong, J., Zhu, H., Ngoma, H., Babaousmail, H., Rizwan, K., & Dike, V. (2021). Comparison of CMIP6 and CMIP5 models in simulating mean and extreme precipitation over East Africa. International Journal of Climatology, 41(15), 6474–6496. https://doi.org/10.1002/joc.7207
  5. Bador, M., Boé, J., Terray, L., Alexander, L. V., Baker, A., Bellucci, A., Haarsma, R., Koenigk, T., Moine, M. P., Lohmann, K., Putrasahan, D. A., Roberts, C., Roberts, M., Scoccimarro, E., Schiemann, R., Seddon, J., Senan, R., Valcke, S., & Vanniere, B. (2020). Impact of Higher Spatial Atmospheric Resolution on Precipitation Extremes Over Land in Global Climate Models. Journal of Geophysical Research: Atmospheres, 125(13), 1–23. https://doi.org/10.1029/2019JD032184
  6. Ban, N., Caillaud, C., Coppola, E., Pichelli, E., Sobolowski, S., Adinolfi, M., Ahrens, B., Alias, A., Anders, I., Bastin, S., Belušić, D., Berthou, S., Brisson, E., Cardoso, R. M., Chan, S. C., Christensen, O. B., Fernández, J., Fita, L., Frisius, T., … Zander, M. J. (2021). The first multi-model ensemble of regional climate simulations at kilometer-scale resolution, part I: evaluation of precipitation. Climate Dynamics, 57(1–2), 275–302. https://doi.org/10.1007/s00382-021-05708-w
  7. Carvalho, D., Rafael, S., Monteiro, A., Rodrigues, V., Lopes, M., & Rocha, A. (2022). How well have CMIP3, CMIP5 and CMIP6 future climate projections portrayed the recently observed warming. Scientific Reports, 12(1), 1–7. https://doi.org/10.1038/s41598-022-16264-6
  8. Cheng, L., & AghaKouchak, A. (2015). Nonstationary Precipitation Intensity-Duration-Frequency Curves for Infrastructure Design in a Changing Climate. Scientific Reports, 4(1), 7093. https://doi.org/10.1038/srep07093
  9. Coles, S., Bawa, J., Trenner, L., & Dorazio, P. (2001). An Introduction to Statistical Modeling of Extreme Values. Springer London. https://doi.org /10.1007/ 978-1-4471-3675-0
  10. Crévolin, V., Hassanzadeh, E., & Bourdeau-Goulet, S.-C. (2023). Updating the intensity-duration-frequency curves in major Canadian cities under changing climate using CMIP5 and CMIP6 model projections. Sustainable Cities and Society, 92(September 2022), 104473. https://doi.org /10.1016/j.scs.2023.10447
  11. de Martonne, E. (1925). Traité de Géographie Physique. 3 tomes. Paris.
  12. Doulabian, S., Golian, S., Toosi, A. S., & Murphy, C. (2021). Evaluating the effects of climate change on precipitation and temperature for Iran using RCP scenarios. Journal of Water and Climate Change, 12(1), 166–184. https://doi.org/10.2166/wcc.2020.114
  13. Doulabian, S., Tousi, E. G., Shadmehri Toosi, A., & Alaghmand, S. (2023). Non-Stationary Precipitation Frequency Estimates for Resilient Infrastructure Design in a Changing Climate: A Case Study in Sydney. Hydrology, 10(6), 1–16. https://doi.org/10.3390 /hydrology10060117
  14. Eyring, V., Bony, S., Meehl, G. A., Senior, C. A., Stevens, B., Stouffer, R. J., & Taylor, K. E. (2016). Overview of the Coupled Model Intercomparison Project Phase 6 (CMIP6) experimental design and organization. Geoscientific Model Development, 9(5), 1937–1958. https://doi.org/10.5194/gmd-9-1937-2016
  15. Ghasemi Tousi, E., O’Brien, W., Doulabian, S., & Shadmehri Toosi, A. (2021). Climate changes impact on stormwater infrastructure design in Tucson Arizona. Sustainable Cities and Society, 72, 103014. https://doi.org/ 10.1016/j.scs.2021.103014
  16. Guhathakurta, P., Sreejith, O. P., & Menon, P. A. (2011). Impact of climate change on extreme rainfall events and flood risk in India. Journal of Earth System Science, 120(3), 359–373.
  17. Gusain, A., Ghosh, S., & Karmakar, S. (2020). Added value of CMIP6 over CMIP5 models in simulating Indian summer monsoon rainfall. Atmospheric Research, 232, 104680. https://doi.org/ 10.1016/j.atmosres.2019.104680
  18. Jentsch, M. F., James, P. A. B., Bourikas, L., & Bahaj, A. B. S. (2013). Transforming existing weather data for worldwide locations to enable energy and building performance simulation under future climates. Renewable Energy, 55, 514–524. https://doi.org/10.1016/ j.renene. 2012.12.049
  19. Khadka, D., Babel, M. S., Abatan, A. A., & Collins, M. (2022). An evaluation of CMIP5 and CMIP6 climate models in simulating summer rainfall in the Southeast Asian monsoon domain. International Journal of Climatology, 42(2), 1181–1202. https://doi.org/10.1002/joc.7296
  20. Khazaei, B., Khatami, S., Hamed, S., Rashidi, L., Wu, C., Madani, K., Kalantari, Z., Destouni, G., & Aghakouchak, A. (2019). Climatic or regionally induced by humans ? Tracing hydro-climatic and land- use changes to better understand the Lake Urmia tragedy. Journal of Hydrology, 569, 203–217. https://doi.org/10.1016/j.jhydrol.2018.12.004
  21. Koutsoyiannis, D., Kozonis, D., & Manetas, A. (1998). A mathematical framework for studying rainfall intensity-duration-frequency relationships. Journal of Hydrology, 206(1–2), 118–135. https://doi.org/10.1016/S0022-1694(98)00097-3
  22. Lau, A., & Behrangi, A. (2022). Understanding Intensity–Duration–Frequency (IDF) Curves Using IMERG Sub-Hourly Precipitation against Dense Gauge Networks. Remote Sensing, 14(19). https://doi.org/10.3390/rs14195032
  23. Luo, N., & Guo, Y. (2022). Impact of model resolution on the simulation of precipitation extremes over China. Sustainability (Switzerland), 14(1). https://doi.org/10.3390/su14010025
  24. Luo, N., Guo, Y., Chou, J., & Gao, Z. (2022). Added value of CMIP6 models over CMIP5 models in simulating the climatological precipitation extremes in China. International Journal of Climatology, 42(2), 1148–1164. https://doi.org /10.1002/joc.7294
  25. Marra, F., Morin, E., Peleg, N., Mei, Y., & Anagnostou, E. N. (2017). Intensity–duration–frequency curves from remote sensing rainfall estimates: comparing satellite and weather radar over the eastern Mediterranean. Hydrology and Earth System Sciences, 21(5), 2389–2404. https://doi.org/10.5194/hess-21-2389-2017
  26. Martel, J.-L., Brissette, F. P., Lucas-Picher, P., Troin, M., & Arsenault, R. (2021). Climate Change and Rainfall Intensity–Duration–Frequency Curves: Overview of Science and Guidelines for Adaptation. Journal of Hydrologic Engineering, 26(10). https://doi.org/ 10.1061/(ASCE)HE.1943-5584.0002122
  27. Maxino, C. C., McAvaney, B. J., Pitman, A. J., & Perkins, S. E. (2008). Ranking the AR4 climate models over the Murray-Darling Basin using simulated maximum temperature, minimum temperature and precipitation. International Journal of Climatology, 28(8), 1097–1112. https://doi.org/ 10.1002/joc.1612
  28. Mianabadi, A. (2023). Evaluation of long-term satellite-based precipitation products for developing intensity-frequency (IF) curves of daily precipitation. Atmospheric Research, 286(February), 106667. https://doi.org/ 10.1016/j.atmosres.2023.106667
  29. Mianabadi, A., Davary, K., Mianabadi, H., Kolahi, M., & Mostert, E. (2023). Toward the development of a conceptual framework for the complex interaction between environmental changes and rural-urban migration. Frontiers in Water, 5, 1–13. https://doi.org/ 10.3389/frwa.2023.1142307
  30. Noor, M., Ismail, T., Shahid, S., Asaduzzaman, M., & Dewan, A. (2021). Evaluating intensity-duration-frequency (IDF) curves of satellite-based precipitation datasets in Peninsular Malaysia. Atmospheric Research, 248, 105203. https://doi.org/ 10.1016/ j.atmosres.2020.105203
  31. Ombadi, M., Nguyen, P., Sorooshian, S., & Hsu, K. (2018). Developing Intensity‐Duration‐Frequency (IDF) Curves From Satellite‐Based Precipitation: Methodology and Evaluation. Water Resources Research, 54(10), 7752–7766. https://doi.org/10.1029/2018WR022929
  32. Oskouei, E. A., Khaki, B. D., Kouzegaran, S., Navidi, M. N., Haghighatd, M., Davatgar, N., & Lopez-Baeza, E. (2022). Mapping Climate Zones of Iran Using Hybrid Interpolation Methods. Remote Sensing, 14(11). https://doi.org /10.3390/rs14112632
  33. Ragno, E., AghaKouchak, A., Love, C. A., Cheng, L., Vahedifard, F., & Lima, C. H. R. (2018). Quantifying Changes in Future Intensity‐Duration‐Frequency Curves Using Multimodel Ensemble Simulations. Water Resources Research, 54(3), 1751–1764. https://doi.org/10.1002/2017WR021975
  34. Rana, A., Madan, S., & Bengtsson, L. (2014). Performance evaluation of regional climate models (RCMs) in determining precipitation characteristics for Gothenburg, Sweden. Hydrology Research, 45(4–5), 703–714. https://doi.org/10.2166/nh.2013.160
  35. Rivera, J. A., & Arnould, G. (2020). Evaluation of the ability of CMIP6 models to simulate precipitation over Southwestern South America: Climatic features and long-term trends (1901–2014). Atmospheric Research, 241, 104953. https://doi.org/10.1016/j.atmosres.2020.104953
  36. Sadegh, M., Moftakhari, H., Gupta, H. V., Ragno, E., Mazdiyasni, O., Sanders, B., Matthew, R., & AghaKouchak, A. (2018). Multihazard Scenarios for Analysis of Compound Extreme Events. Geophysical Research Letters, 45(11), 5470–5480. https://doi.org/10.1029/2018GL077317
  37. Sarkar, S., & Maity, R. (2022). Future Characteristics of Extreme Precipitation Indicate the Dominance of Frequency Over Intensity: A Multi-Model Assessment From CMIP6 Across India. Journal of Geophysical Research: Atmospheres, 127(16), 1–22. https://doi.org/10.1029/2021JD035539
  38. Shrestha, A., Babel, M., Weesakul, S., & Vojinovic, Z. (2017). Developing Intensity–Duration–Frequency (IDF) Curves under Climate Change Uncertainty: The Case of Bangkok, Thailand. Water, 9(2), 1–22. https://doi.org/10.3390/w9020145
  39. Srivastava, A. K., Grotjahn, R., Ullrich, P. A., & Sadegh, M. (2021). Pooling Data Improves Multimodel IDF Estimates over Median-Based IDF Estimates: Analysis over the Susquehanna and Florida. Journal of Hydrometeorology, 22(4), 971–995. https://doi.org/10.1175/JHM-D-20-0180.1
  40. Sugahara, S., da Rocha, R. P., & Silveira, R. (2009). Non-stationary frequency analysis of extreme daily rainfall in Sao Paulo, Brazil. International Journal of Climatology, 29(9), 1339–1349. https://doi.org/10.1002/joc.1760
  41. Tang, Y., Wu, Q., Li, X., Sun, Y., & Hu, C. (2023). Comparison of different ensemble precipitation forecast system evaluation , integration and hydrological applications. Acta Geophysica, 71(1), 405–421. https://doi.org/10.1007 /s11600-022-00877-6
  42. Thrasher, B., Wang, W., Michaelis, A., Melton, F., Lee, T., & Nemani, R. (2022). NASA Global Daily Downscaled Projections, CMIP6. Scientific Data, 9(1), 262. https://doi.org/10.1038 /s41597-022-01393-4
  43. Venkatesh, K., Maheswaran, R., & Devacharan, J. (2022). Framework for developing IDF curves using satellite precipitation: a case study using GPM-IMERG V6 data. Earth Science Informatics, 15(1), 671–687. https://doi.org/10.1007 /s12145-021-00708-0
  44. Wang, D., Liu, J., Luan, Q., Shao, W., Fu, X., Wang, H., & Gu, Y. (2023). Projection of future precipitation change using CMIP6 multimodel ensemble based on fusion of multiple machine learning algorithms: A case in Hanjiang River Basin, China. Meteorological Applications, 30(5), 1–21. https://doi.org/10.1002/met.2144
  45. Yan, L., Xiong, L., Jiang, C., Zhang, M., Wang, D., & Xu, C. Y. (2021). Updating intensity–duration–frequency curves for urban infrastructure design under a changing environment. Wiley
    Interdisciplinary Reviews: Water
    , 8(3), 1–24. https://doi.org/10.1002/wat2.1519