پایش نقشه‌های گسترش سیلاب با استفاده از تصاویر راداری (SAR) (مطالعه موردی: سیل فروردین 1398، شهرستان آق قلا)

نوع مقاله : مقاله پژوهشی

نویسندگان

1 استادیار گروه جغرافیای دانشگاه گلستان، گرگان، ایران

2 دانشجوی کارشناسی ارشد مخاطرات محیطی دانشگاه گلستان، گرگان، ایران

چکیده

سیلاب‌ها از مهم‌ترین مخاطراتی هستند که  بسته به شدت بارندگی‌ها و سایر عوامل موثر سبب وارد آمدن خسارات زیادی به نواحی شهری و روستایی می‌شوند. استفاده از داده­های راداری یکی از جدیدترین و موثرترین روش‌ها ‌در مطالعه سیلاب است. می‌توان جزییات دقیق سیلاب­ها را مطالعه و حد گسترش آن را مشخص کرد تا در برنامه­ریزی­های آتی بتوان از آن استفاده کرد. در این تحقیق به شناسایی مناطق سیل‌زده  شهرستان آق‌قلا و روستاهای اطراف آن به وسیله  داده‌های سنتینل1  از تاریخ 23 مارس تا 4 آوریل پرداخته شده است. هدف پژوهش حاضر تولید نقشه‌هایی است که گسترش سیلاب را  از تصاویر راداری(SAR) استخراج و محدوده گسترش سیلاب را در فروردین 1398 نشان می‌دهد.  از نرم افزار‌SNAP  ، ARCGIS  و ENVI به عنوان ابزارهای تحقیق استفاده شده است.  نتایج تحقیق نشان داد در محدوده مورد مطالعه در تاریخ23 مارس، 115 کیلومتر مربع و در تاریخ 29 مارس، 107  کیلومتر مربع در اثر سیل فروردین 98 به زیر آب رفته است. همچنین نتایج بررسی تصاویر راداری و بازدید‌های میدانی نشان داد دلایل اصلی سیلابی شدن منطقه‌، بارندگی شدید طی چند روز، پر شدن سد وشمگیر،  شیب کم منطقه، عدم لایروبی رودخانه، وجود پل‌های زیاد بر روی رودخانه و ارتفاع کم پل‌ها  و درصد بالای رس در خاک منطقه بوده است.

کلیدواژه‌ها


عنوان مقاله [English]

Monitoring of flood expansion maps using radar images (SAR) (Case study: Flood in March 2019, Aq Qala city)

نویسندگان [English]

  • Somayeh Emadodin 1
  • Masoud Mohammad Ghasemi 2
1 Department of Geography, Golestan University, Gorgan, Iran
2 Department of Geography, Golestan University, Gorgan, Iran.
چکیده [English]

Monitoring of flood expansion maps using radar images (SAR) (Case study: Flood Flood in March 2019, Aq Qala city)
Abstract
Floods are one of the most important hazards that depending on the intensity of rainfall and other effective factors cause great damage to urban and rural areas.
The use of radar data is one of the newest and most effective methods in flood study.
The exact details of the floods can be studied and the extent of their spread can be determined so that it can be used in future planning.
In this study, the flooded areas of Aqqala city and the surrounding villages have been identified by Sentinel 1 data from March 23 to April 4.The aim of this study is to produce maps that extract flood spread from radar (sar) images and show the extent of flood spread in April 2017.Snap, arcgis and envi software have been used as research tools.
The results of the research showed that on March 23, 115 square kilometers in the study area and on March 29, 107 square kilometers were submerged due to floods in April 1998. Also, the results of radar images and field visits showed that the main reasons for flooding in the area, heavy rainfall in a few days, flooding of the dam, low slope, lack of river dredging, high bridges on the river and low height of bridges and high percentage of clay in The soil of the area has been.
Keywords: Flood, Radar Images, Sentinel 1, Gorganrood River, Aq Qala

کلیدواژه‌ها [English]

  • Flood
  • Radar Images
  • Sentinel 1
  • Gorganrood River
  • Aq Qala
  1. منابع

    1. افشین، یدااله. 1373. رودخانه های ایران، جلد اول، چاپ اول، تهران، وزارت نیرو.
    2. بینش، نگین، نیک سخن، محمد حسین، سارنگ، امین. 1397. تحلیل تاثیر تغییر اقلیم بر بارش‌های حدی حوزه سیل برگردان غرب تهران، پژوهشنامه مدیریت حوزه آبخیز، شماره 17 ص234-226.
    3. پنجه کوبی، پرویز، ریحانی پروری، محمد، جاوردی، مهدی، رحمن نیا، محمد رضا، (1399). واکاوی شدت- مدت- مساحت بارش و تاثیر آن در سیل با استفاده از تصاویر و داده‌های رادار. سنجش از دور و GIS ایران. سال دوازدهم؛ شماره اول،ص86-73.
    4. سازمان مدیریت و برنامه ریزی استان گلستان، 1395. گزارش اقتصادی-اجتماعی و فرهنگی استان گلستان، ناشر سازمان برنامه و بودجه کشور، مرکز اسناد، چاپ اول، 396ص.
    5. سلیمانی، کریم، شریفی پور، مهدی، عبدلی بوژانی، سپیده، 1399. الگوریتم آشکارسازی پهنه خسارت سیل با استفاده از تصاویر سنتینل 2 (مطالعه موردی: سیلاب فروردین 1398 استان گلستان)، مجله اکو هیدرولوژی، دوره 7، شماره 2، ص 312-303.
    6. دفتر اطلاعات و تحقیقات سازمان هواشناسی استان گلستان. 1398.
    7. گزارس مقدماتی سیل گلستان، مرکز تحقیقات راه، مسکن و شهرسازی. 1398.
    8. گزارش عملکرد جمعیت هلال احمر استان گلستان در برف، کولاک، سیل و آبگرفتگی، بهار. 1398.
    9. گل پرنیان، طواق، 1393. سیلاب های مخرب استان گلستان. مجله رشد آموزش جغرافیا، دوره 23، شماره 3.
    10. معتمد، احمد، مقیمی، ابراهیم. 1387. کاربرد ژئومورفولوژی در برنامه ریزی، انتشارات سمت.
    11. مقیمی، ابراهیم، 1388. اکوژئومورفولوژی و حقوق رودخانه. انتشارات دانشگاه تهران.
    12. نصری، مسعود، سلیمانی سارود، فرشاد، 1389. اولویت بندی مناطق موثر بر دبی اوج سیلاب با استفاده از مدل هیدرولوژیکی HMS-HEC درحوضه آبخیز سد شیخ بهایی. فصلنامه علوم و فنون منابع طبیعی، سال ششم، شماره 3 ص 15-1.
    13. Bates, P.D. 2004. Remote sensing and flood inundation modelling. Hydrol. Process. 18(13): 2593–2597.
    14. Y., Jacob, A., and Gamba, P. 2015. Spaceborne SAR data for global urban mapping at 30 m resolution using a robust urban extractor. ISPRS Journal of Photogrammetry and Remote Sensing, 103: 28-37.
    15. Brakenridge, R., and Anderson, E. 2006. MODIS-based flood detection, mapping and measurement: the potential for operational hydrological applications. In Transboundary floods: reducing risks through flood management. Springer, Dordrecht, pp. 1–12.
    16. M.L., Townshend. J.R., DiMiceli. C.M., Noojipady. P., and Sohlberg, R.A. 2009. A new global raster water mask at 250 m resolution. Int. J. Digit. Earth. 2 (4): 291–308.
    17. Chen, S.A, Evans, B., Djordjevic, S., Savic, A., Dragan, 2012. Multi-layered coarse grid modeling in 2D urban flood simulations, Journal of Hydrology 470-471, 1-11
    18. -Centre for Research on the Epidemiology of Disasters, Emergency Events Database (CRED EMDAT), http://www.emdat.be/.
    19. Dovonce, E. 2000. A physically based distrinbuted hydrologic model, Master of Science Thesis, the Pennsylvania State University;
    20. De Risi, R., Jalayer, F., and De Paola, F. 2015. Meso-scale hazard zoning of potentially flood prone areas. Journal of Hydrology 527: 315-325.
    21. F.V., Van Den Bergh, J.C., and Rietveld. P. 2004. Modelling biodiversity and land use: Urban growth, agriculture and nature in a wetland area. Ecol. Econ. 51: 201–216.
    22. Gessner, M.O., Hinkelmann, R., Nützmann, G., Jekel, M., Singer, G., Lewandowski, J., Nehls, T., and Barjenbruch, M. 2014. Urban water interfaces. J. Hydrol. 514: 226–232.
    23. Gleason, C.J, Smith, L.C, and Lee, J. 2014. Retrieval of river discharge solely from satellite imagery and at-many-stations hydraulic geometry: Sensitivity to river form and optimization parameters. Water Res. 50(12): 9604–9619.
    24. https://scihub.copernicus.eu.
    25. https://search.asf.alaska.edu/
    26. Hong Quang, N., Anh Tuan, V., Thu Hong, L., Manh Hung, N., Thi The, D., Thi Dieu, D., Duc Anh, N., and Hackney, C. 2020. Hydrological /Hydraulic Modeling - Based Thresholding of Multi SAR Remote Sensing Data for Flood Monitoring in Regions of the Vietnamese Lower Mekong River Basin. Journal Water. 12.71
    27. V. 2015. Remote sensing of floods and flood-prone areas: an overview. Journal of Coastal Research, 31(4): 1005-1013
    28. Khan, S.I., Hong, Y., Wang, J., Yilmaz, K.K., Gourley. J.J., Adler, R.F., and Irwin, D. 2011. Satellite remote sensing and hydrologic modeling for flood inundation mapping in Lake Victoria basin: Implications for hydrologic prediction in ungauged basins. IEEE Trans. Geosci. Remote Sens. 49 (1): 85–95
    29. Liang, J., and Liu, D. 2020. A local thresholding approach to flood water delineation using Sentinel-1 SAR imagery. ISPRS Journal of Photogrammetry and Remote Sensing. 159. 53-62.
    30. Moel, H.D., Alphen, J.V., and Aerts, J.C.J.H. 2009. Flood maps in Europe-methods, availability and use. Nat. Hazards Earth Syst. Sci. 9: 289–301
    31. Moayeri, M., and Entezari, M. 2008. Floods and review floods in province of Esfahan. Journal of Geographic perspective. 3(6): 110-124. [Persian]
    32. Paul, S.H, Sharif, H.O. 1960–2016. Analysis of Damage Caused by Hydrometeorological Disasters in Texas, Res. 31: 1005–1013.
    33. Rahman, R., and Thakur, P. 2017. Detecting, mapping and analysing of flood water propagation using synthetic aperture radar (SAR) satellite data and GIS: A case study from the Kendrapara District of Orissa State of India. The Egyptian Journal of Remote Sensing and Space Sciences. 10.2
    34. Rahman, S., and Liping, Di. 2020. A Systematic Review on Case Studies of Remote-Sensing-Based Flood Crop Loss Assessment. Agriculture 2020, 10, 131
    35. Rajabizadeh, Y, Ayyoubzadeh, S.A, Zahiri, A, (2019) Flood survey of Golestan province in 2017-2018 and providing solutions for its control and management in the future. Iranian Journal of Ecohydrology. (a); 6(4): 921-942. [Persian].
    36. Revellino, P, Guerriero, L, Mascellaro, N, Fiorillo, F, Grelle, G, Ruzza, G, and Guadagno, F.M. 2019. Multiple Effects of Intense Meteorological Events in the Benevento Province, Southern Italy. Water, 11(8):1560.
    37. Ruzza, G, Guerriero, L, Grelle, G, Guadagno, F.M, and Revellino, P. 2019. Multi-Method Tracking of Monsoon Floods Using Sentinel-1 Imagery. Water, 11(11): 2289.
    38. Shen, X, Wan,. D, Mao, K, Anagnostou, E, and Hong, Y. 2019. Inundation extent mapping by synthetic aperture radar: a review. Remote Sensing, 11(7): 879.
    39. Schumm, S.A.(1981) evolution and response of the fluvial system, sediment logical implications, socity of economic paleontologist and mineralogists special publication 31,19-29.
    40. Tsyganskaya, V., Martinis, S., Marzahn, P., and Ludwig, R. 2018. Detection of temporary flooded vegetation using
      Sentinel-1 time series data. Remote Sensing, 10(8):1286.
    41. Viala, E. 2008. Water for food, water for life a comprehensive assessment of water management in agriculture. Springer.