پیش‌نمایی تغییرات توزیع بارش و دما با استفاده از شبیه‌سازی اصلاح اریبی شده مدل‎های اقلیمی گزارش ششم (مطالعه موردی: ایستگاه همدیدی کرمان)

نوع مقاله : مقاله پژوهشی

نویسندگان

1 گروه اکولوژی، پژوهشکده علوم محیطی، پژوهشگاه علوم و تکنولوژی پیشرفته و علوم محیطی، دانشگاه تحصیلات تکمیلی صنعتی و فناوری پیشرفته، کرمان، ایران

2 2- پژوهشگر، انستیتوی مطالعات پیشرفته(IUSS) ، پاویا، ایتالیا

3 1- گروه اکولوژی، پژوهشکده علوم محیطی، پژوهشگاه علوم و تکنولوژی پیشرفته و علوم محیطی، دانشگاه تحصیلات تکمیلی صنعتی و فناوری پیشرفته، کرمان، ایران

چکیده

در این پژوهش اثرات تغییر اقلیم بر میزان و توزیع بارش و دما در ایستگاه سینوپتیک کرمان بررسی شد. به این منظور خروجی مدل‎های اقلیمی جهانی گزارش ششم IPCC برای دوره پایه (1965 تا 2014) برای بارش و دما در مقایسه با داده‎های ایستگاه ارزیابی شد. برای ارزیابی مدل‎ها از معیارهای خطاسنجی شامل ضریب همبستگی (r)، جذر میانگین مربعات خطا (RMSE)، میانگین خطا (ME) و شاخص KGE استفاده شد. سپس بهترین مدل‎ها برای پیش‎بینی این دو متغیر در سال‎های آینده (2051 تا 2100) بر مبنای سناریوهای مختلف اقلیمی (SSP1-2.6، SSP2-4.5، SSP3-7.0 و SSP5-8.5) انتخاب شدند. در نهایت تغییرات توزیع بارش و دما در دوره آینده نسبت به دوره پایه مورد بررسی قرار گرفت. بر اساس نتایج مطالعه حاضر پس از اصلاح اریبی مدل ACCESS-CM2 برای تخمین دما (ME=0 °C، RMSE=1.87 °C، r=1، KGE=0.998) و مدل MRI-ESM2-0 برای تخمین بارش (ME=-0.002 mm/month، RMSE=17 mm/month، r=0.484، KGE=0.468) از دقت بهتری برخوردار هستند. نتایج بررسی روند تغییرات بارش و توزیع آن نشان‌دهنده عدم معنی‌داری روند تغییرات (مقادیر P-value بیشتر از 1/0) و عدم معنی‌داری تغییر میانگین و واریانس بارش (مقادیر P-value کمتر از 05/0) بود و لذا احتمال افزایش وقوع بارش‌های حدی نمی‌تواند از نظر آماری قابل انتظار باشد. اما تغییرات روند، میانگین و واریانس دما از نظر آماری معنی‌دار بوده و احتمال وقوع تنش‌های گرمایی در آینده افزایش خواهد یافت. افزایش معنی‌دار دما در آینده می‌تواند منابع آبی شهر کرمان را از نظر کمی و کیفی تحت تاثیر قرار دهد که این مسئله مستلزم توجه بیشتر سیاست‌گذاران به مدیریت مناسب منابع آب است.

کلیدواژه‌ها

موضوعات


عنوان مقاله [English]

Projection of Change in the Distribution of Precipitation and Temperature Using Bias-Corrected Simulations of CMIP6 Climate Models (Case Study: Kerman Synoptic Station)

نویسندگان [English]

  • Ameneh Mianabadi 1
  • Mohammad Mehdi Bateni 2
  • Sedigheh Mohammadi 3
1 Department of Ecology, Institute of Science and High Technology and Environmental Sciences, Graduate University of Advanced Technology, Kerman, Iran
2 University School for Advanced Studies Pavia, Piazza della Vittoria 15, 27100 Pavia, Italy
3 Department of Ecology, Institute of Science and High Technology and Environmental Sciences, Graduate University of Advanced Technology, Kerman, Iran
چکیده [English]

In this research, the effects of climate change on the amount and distribution of precipitation and temperature in the Kerman synoptic station were investigated. For this purpose, the output of global climate models of CMIP6 for the historical period (1965 to 2014) for precipitation and temperature were evaluated in comparison with the station data. To evaluate the models, evaluation metrics including correlation coefficient (r), root mean square error (RMSE), mean error (ME) and KGE index were used. Then the best-performed models were selected to predict these two variables in the future period (2051 to 2100) based on different climate scenarios (SSP1-2.6, SSP2-4.5, SSP3-7.0 and SSP5-8.5). Finally, changes in the distribution of precipitation and temperature in the future period compared to the base period were investigated. The results showed that after bias correction, the ACCESS-CM2 and MRI-ESM2-0 models performed more accurately for temperature (ME=0 °C, RMSE=1.87 °C, r=1, KGE=0.998) and precipitation (ME=-0.002 mm/month, RMSE=17 mm/month, r=0.484, KGE=0.468) estimation, respectively. The results of trend analysis indicated the trends in the amount of precipitation were not significant (P-value>0.1). Comparison between the average and variance of precipitation also was not significant (P-value<0.05), and therefore the possibility of increasing the occurrence of extreme precipitation cannot be statistically expected. However, trends in temperature and its average and variance are statistically significant and the possibility of heat stress will increase in the future. A significant increase in temperature in the future can affect the quantity and quality of Kerman's water resources, requiring more attention to the proper management of water resources.

کلیدواژه‌ها [English]

  • Climate Change
  • Precipitation
  • Temperature
  • Kerman
  • CMIP6
  1. اسدی، ا. و حیدری، ع. 1390. تحلیل تغییرات سری‌های دما و بارش شیراز طی دوره 1951-2005. جغرافیا و برنامه‌ریزی محیطی. 22 (41): 137-152.
  2. انصاری مهابادی، ث.، دهبان، ح.، زارعیان، م. ج.، فرخ نیا، ا.، 1401، بررسی روند تغییرات دما و بارش حوضه‌های آبریز ایران در افق 20 سال آینده بر اساس برونداد مدل‌هایCMIP6، مجله پژوهش آب ایران، جلد 16، شماره 1، 22034/IWRJ.2022.11204.
  3. حجازی زاده، ز. و پروین، ن. 1388. بررسی تغییرات دما و بارش تهران طی نیم قرن اخیر. جغرافیا و برنامه‌ریزی منطقه‌ای. پیش شماره پاییز و زمستان 1388. 43-56.
  4. رئیسی نافچی، ع. و سلطانی محمدی، ا. 1395. بررسی تغییرات زمانی بارندگی و میانگین، حداقل و حداکثر دما (مطالعه موردی: ایستگاه شهرکرد). نیوار. 94-95: 69-80.
  5. زرین، آ.، داداشی رودباری، ع.، 1400، تأثیر تغییر اقلیم بر بارشهای سنگین ایران با بکارگیری مدل هامدی CMIP6، مجله آب و توسعه پایدار، جلد 8، شماره 4، 119-124.
  6. سرابی، م.، دستورانی، م. ت.، زرین، آ.، 1399، بررسی تاثیر تغییرات اقلیمی آینده بر وضعیت دما و بارش (مطالعه موردی: حوضه آبخیز سد طرق مشهد)، مجله هواشناسی و علوم جو، جلد 3، شماره 1، 63-83.
  7. کامیابی، س. و عبدی، ک. 1399. آشکارسازی و تحلیل روند تغییر اقلیم (بارش و دما) در محدوده ساری. علوم و تکنولوژی محیط زیست. 22 (7): 165-179.
  8. میان آبادی، آ. و داوری، ک. 1402. بررسی تغییرات مقدار و توزیع بارش و دما در ایران با تاکید بر اثرات آن‌ها بر منابع آب. آب و توسعه پایدار. پذیرش شده.
  9. ناصرزاده، م.ح.، دوستکامیان، م.، بیرانوند، آ.، قهرمانی، ف. و بیات، ع. 1391. توزیع فضایی روند تغییرات فصلی و سالانه دما و بارش (مطالعه موردی: استان خوزستان). اندیشه جغرافیایی. 6 (11): 31-47.
  10. Ahmadalipour A, Rana A, Moradkhani H and Sharma A (2017) Multi-criteria evaluation of CMIP5 GCMs for climate change impact analysis. Theoretical and Applied Climatology 128(1–2):71–87. Available at: http://link.springer.com/10.1007/s00704-015-1695-4
  11. Almagro A, Oliveira PTS, Rosolem R, Hagemann S and Nobre CA (2020) Performance evaluation of Eta/HadGEM2-ES and Eta/MIROC5 precipitation simulations over Brazil. Atmospheric Research 244:105053. Available at: https://linkinghub.elsevier.com/retrieve/pii/S0169809519316989
  12. Almazroui M, Ashfaq M, Islam MN, Rashid IU, Kamil S, Abid MA, O’Brien E, Ismail M, Reboita MS, Sörensson AA, … Sylla MB (2021) Assessment of CMIP6 Performance and Projected Temperature and Precipitation Changes Over South America. Earth Systems and Environment. Springer International Publishing 5(2):155–183. Available at: https://doi.org/10.1007/s41748-021-00233-6
  13. Assamnew AD and Tsidu GM (2020) The performance of regional climate models driven by various general circulation models in reproducing observed rainfall over East Africa. Theoretical and Applied Climatology 142(3–4):1169–1189. Available at: https://link.springer.com/10.1007/s00704-020-03357-3
  14. Bernacchia A and Pigolotti S (2011) Self-Consistent Method for Density Estimation. Journal of the Royal Statistical Society Series B: Statistical Methodology 73(3):407–422. Available at: https://academic.oup.com/jrsssb/article/73/3/407/7034366
  15. Bozkurt D, Rojas M, Boisier JP and Valdivieso J (2018) Projected hydroclimate changes over Andean basins in central Chile from downscaled CMIP5 models under the low and high emission scenarios. Climatic Change 150(3–4):131–147. Available at: http://link.springer.com/10.1007/s10584-018-2246-7
  16. Cai L, Alexeev VA, Walsh JE and Bhatt US (2018) Patterns, Impacts, and Future Projections of Summer Variability in the Arctic from CMIP5 Models. Journal of Climate 31(24):9815–9833. Available at: https://journals.ametsoc.org/doi/10.1175/JCLI-D-18-0119.1
  17. Carvalho D, Rafael S, Monteiro A, Rodrigues V, Lopes M and Rocha A (2022) How well have CMIP3, CMIP5 and CMIP6 future climate projections portrayed the recently observed warming. Scientific Reports. Nature Publishing Group UK 12(1):1–7. Available at: https://doi.org/10.1038/s41598-022-16264-6
  18. Eyring V, Bony S, Meehl GA, Senior CA, Stevens B, Stouffer RJ and Taylor KE (2016) Overview of the Coupled Model Intercomparison Project Phase 6 (CMIP6) experimental design and organization. Geoscientific Model Development 9(5):1937–1958. Available at: https://gmd.copernicus.org/articles/9/1937/2016/
  19. Fang GH, Yang J, Chen YN and Zammit C (2015) Comparing bias correction methods in downscaling meteorological variables for a hydrologic impact study in an arid area in China. Hydrology and Earth System Sciences 19(6):2547–2559. Available at: https://hess.copernicus.org/articles/19/2547/2015/
  20. Gouda KC, Nahak S and Goswami P (2018) Evaluation of a GCM in seasonal forecasting of extreme rainfall events over continental India. Weather and Climate Extremes 21:10–16. Available at: https://linkinghub.elsevier.com/retrieve/pii/S221209471730049X
  21. Guo J, Yan Y, Chen D, Lv Y, Han Y, Guo X, Liu L, Miao Y, Chen T, Nie J and Zhai P (2020) The response of warm-season precipitation extremes in China to global warming: an observational perspective from radiosonde measurements. Climate Dynamics 54(9–10):3977–3989. Available at: http://link.springer.com/10.1007/s00382-020-05216-3
  22. Gusain A, Ghosh S and Karmakar S (2020) Added value of CMIP6 over CMIP5 models in simulating Indian summer monsoon rainfall. Atmospheric Research 232:104680. Available at: https://linkinghub.elsevier.com/retrieve/pii/S0169809519307665
  23. Hwang S and Graham WD (2013) Development and comparative evaluation of a stochastic analog method to downscale daily GCM precipitation. Hydrology and Earth System Sciences 17(11):4481–4502. Available at: https://hess.copernicus.org/articles/17/4481/2013/
  24. IPCC (2001) Summary for policymakers, Climate change 2001: Mitigation.
  25. IPCC (2007) Climate Change 2007: The Physical Science Basis. Contribution of Working Group I to the Fourth Assessment.Cambridge University Press: Cambridge.
  26. IPCC (2013) Climate Change 2013: The Physical Science Basis. Contribution of Working Group I to the Fifth Assessment.
  27. Jahn M (2015) Economics of extreme weather events: Terminology and regional impact models. Weather and Climate Extremes. Elsevier 10:29–39. Available at: http://dx.doi.org/10.1016/j.wace.2015.08.005
  28. Khadka D, Babel MS, Abatan AA and Collins M (2022) An evaluation of CMIP5 and CMIP6 climate models in simulating summer rainfall in the Southeast Asian monsoon domain. International Journal of Climatology 42(2):1181–1202. Available at: https://onlinelibrary.wiley.com/doi/10.1002/joc.7296
  29. Khan N, Shahid S, Ahmed K, Ismail T, Nawaz N and Son M (2018) Performance Assessment of General Circulation Model in Simulating Daily Precipitation and Temperature Using Multiple Gridded Datasets. Water 10(12):1793. Available at: http://www.mdpi.com/2073-4441/10/12/1793
  30. Kim KB, Kwon H-H and Han D (2015) Bias correction methods for regional climate model simulations considering the distributional parametric uncertainty underlying the observations. Journal of Hydrology 530:568–579. Available at: https://linkinghub.elsevier.com/retrieve/pii/S002216941500774X
  31. Lenderink G, Buishand A and van Deursen W (2007) Estimates of future discharges of the river Rhine using two scenario methodologies: direct versus delta approach. Hydrology and Earth System Sciences 11(3):1145–1159. Available at: https://hess.copernicus.org/articles/11/1145/2007/
  32. Li J, Huo R, Chen H, Zhao Y and Zhao T (2021) Comparative Assessment and Future Prediction Using CMIP6 and CMIP5 for Annual Precipitation and Extreme Precipitation Simulation. Frontiers in Earth Science 9. Available at: https://www.frontiersin.org/articles/10.3389/feart.2021.687976/full
  33. Liepert BG and Previdi M (2012) Inter-model variability and biases of the global water cycle in CMIP3 coupled climate models. Environmental Research Letters 7(1):014006
  34. Majdi F, Hosseini SA, Karbalaee A, Kaseri M and Marjanian S (2022) Future projection of precipitation and temperature changes in the Middle East and North Africa (MENA) region based on CMIP6. Theoretical and Applied Climatology 147(3–4):1249–1262. Available at: https://link.springer.com/10.1007/s00704-021-03916-2
  35. Maxino CC, McAvaney BJ, Pitman AJ and Perkins SE (2008) Ranking the AR4 climate models over the Murray-Darling Basin using simulated maximum temperature, minimum temperature and precipitation. International Journal of Climatology 28(8):1097–1112. Available at: https://onlinelibrary.wiley.com/doi/10.1002/joc.1612
  36. Mianabadi A, Shirazi P, Ghahraman B, Coenders-Gerrits AMJ, Alizadeh A and Davary K (2019) Assessment of short- and long-term memory in trends of major climatic variables over Iran: 1966–2015. Theoretical and Applied Climatology 135(1–2):677–691
  37. Moise A, Wilson L, Grose M, Whetton P, Watterson I, Bhend J, Bathols J, Hanson L, Erwin T, Bedin T, … Rafter T (2015) Evaluation of CMIP3 and CMIP5 Models over the Australian Region to Inform Confidence in Projections. Australian Meteorological and Oceanographic Journal 65(1):19–53
  38. Mukherjee S, Aadhar S, Stone D and Mishra V (2018) Increase in extreme precipitation events under anthropogenic warming in India. Weather and Climate Extremes 20:45–53. Available at: https://linkinghub.elsevier.com/retrieve/pii/S2212094717301068
  39. Newton BW, Farjad B and Orwin JF (2021) Spatial and Temporal Shifts in Historic and Future Temperature and Precipitation Patterns Related to Snow Accumulation and Melt REgimes in Alberta,Canada. Environmental Reaserch Letter 13:1013
  40. Ongoma V, Chena H and Gaoa C (2018) Projected changes in mean rainfall and temperature over east Africa based on CMIP5 models. International Journal of Climatology 38(3):1375–1392
  41. Papalexiou SM and Montanari A (2019) Global and Regional Increase of Precipitation Extremes Under Global Warming. Water Resources Research 55(6):4901–4914. Available at: https://onlinelibrary.wiley.com/doi/10.1029/2018WR024067
  42. Piao J, Chen W, Wang L and Chen S (2022) Future projections of precipitation, surface temperatures and drought events over the monsoon transitional zone in China from bias‐corrected CMIP6 models. International Journal of Climatology 42(2):1203–1219. Available at: https://onlinelibrary.wiley.com/doi/10.1002/joc.7297
  43. Raghavan S V, Liu J, Nguyen NS, Vu MT and Liong S-Y (2018) Assessment of CMIP5 historical simulations of rainfall over Southeast Asia. Theoretical and Applied Climatology 132(3–4):989–1002. Available at: http://link.springer.com/10.1007/s00704-017-2111-z
  44. Ragno E, AghaKouchak A, Love CA, Cheng L, Vahedifard F and Lima CHR (2018) Quantifying Changes in Future Intensity‐Duration‐Frequency Curves Using Multimodel Ensemble Simulations. Water Resources Research 54(3):1751–1764. Available at: https://onlinelibrary.wiley.com/doi/10.1002/2017WR021975
  45. Rana A, Madan S and Bengtsson L (2014) Performance evaluation of regional climate models (RCMs) in determining precipitation characteristics for Gothenburg, Sweden. Hydrology Research 45(4–5):703–714. Available at: https://iwaponline.com/hr/article/45/4-5/703/1267/Performance-evaluation-of-regional-climate-models
  46. Rivera JA and Arnould G (2020) Evaluation of the ability of CMIP6 models to simulate precipitation over Southwestern South America: Climatic features and long-term trends (1901–2014). Atmospheric Research 241:104953. Available at: https://linkinghub.elsevier.com/retrieve/pii/S0169809519317259
  47. Sen PK (1968) Estimates of the Regression Coefficient Based on Kendall’s Tau. Journal of the American Statistical Association 63:13799–1389. Available at: https://www.jstor.org /stable /2285891?origin=crossref
  48. Stouffer RJ, Eyring V, Meehl GA, Bony S, Senior C, Stevens B and Taylor KE (2017) CMIP5 Scientific Gaps and Recommendations for CMIP6. Bulletin of the American Meteorological Society 98(1):95–105. Available at: https://journals.ametsoc.org/doi/10.1175/BAMS-D-15-00013.1
  49. Tabari H (2020) Climate change impact on flood and extreme precipitation increases with water availability. Scientific Reports. Nature Publishing Group UK 10(1):1–10. Available at: https://doi.org/10.1038/s41598-020-70816-2
  50. Wilby RL and Wigley TML (1997) Downscaling general circulation model output: a review of methods and limitations. Progress in Physical Geography 21(4):530–548. Available at: http://ppg.sagepub.com/content/21/4/530.abstract
  51. Wilby RL, Wigley TML, Conway D, Jones PD, Hewitson BC, Main J and Wilks DS (1998) Statistical downscaling of general circulation model output: A comparison of methods. Water Resources Research 34(11):2995–3008. Available at: http://doi.wiley.com /10.1029/98WR02577
  52. WMO (1998) The Global Climate System Review.
  53. Xu K, Milliman JD and Xu H (2010) Temporal trend of precipitation and runoff in major Chinese Rivers since 1951. Global and Planetary Change 73:219–232. Available at: https://linkinghub.elsevier.com/retrieve/pii/S0921818110001530
  54. Yang X, Zhou B, Xu Y and Han Z (2021) CMIP6 Evaluation and Projection of Temperature and Precipitation over China. Advances in Atmospheric Sciences 38(5):817–830. Available at: https://link.springer.com /10.1007/s00376-021-0351-4
  55. Yazdandoost F, Moradian S, Izadi A and Aghakouchak A (2021) Evaluation of CMIP6 precipitation simulations across different climatic zones: Uncertainty and model intercomparison. Atmospheric Research 250:105369. Available at: https://linkinghub.elsevier.com/retrieve/pii/S0169809520313065
  56. Zhan W, He X, Sheffield J and Wood EF (2020) Projected Seasonal Changes in Large-Scale Global Precipitation and Temperature Extremes Based on the CMIP5 Ensemble. Journal of Climate 33(13):5651–5671
  57. Zhang X, Hua L and Jiang D (2022) Assessment of CMIP6 model performance for temperature and precipitation in Xinjiang, China. Atmospheric and Oceanic Science Letters 15(2):100128. Available at: https://linkinghub.elsevier.com/retrieve/pii/S1674283421001070
  58. Zhu YY and Yang S (p2020) Evaluation of CMIP6 for historical temperature and precipitation over the Tibetan Plateau apnd its comparison with CMIP5. Advances in Climate Change Research.
    Elsevier Ltd 11(3):239–251. Available at: https://doi.org/10.1016/j.accre. 08.001

Zou S, Abuduwaili J, Duan W and Ding J (2021) Attribution of changes in the trend and temporal non ‑ uniformity of extreme precipitation events in Central Asia. Scientific Reports. Nature Publishing Group UK (0123456789):1–11. Available at: https://doi.org/ 10.1038/s41598-021-94486-w